[1]张圆圆,刘文敬,张斌斌,等.桃内酯芳香物质合成相关的环氧化物水解酶候选基因的鉴别[J].江苏农业学报,2023,(01):178-186.[doi:doi:10.3969/j.issn.1000-4440.2023.01.021]
 ZHANG Yuan-yuan,LIU Wen-jing,ZHANG Bin-bin,et al.Identification of candidate epoxide hydrolase genes involved in the biosynthesis of lactone volatile compounds in peach (Prunus persica L.)[J].,2023,(01):178-186.[doi:doi:10.3969/j.issn.1000-4440.2023.01.021]
点击复制

桃内酯芳香物质合成相关的环氧化物水解酶候选基因的鉴别()
分享到:

江苏农业学报[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2023年01期
页码:
178-186
栏目:
园艺
出版日期:
2023-02-28

文章信息/Info

Title:
Identification of candidate epoxide hydrolase genes involved in the biosynthesis of lactone volatile compounds in peach (Prunus persica L.)
作者:
张圆圆1刘文敬12张斌斌1马瑞娟1俞明亮1
(1.江苏省农业科学院果树研究所/江苏省高效园艺作物遗传改良重点实验室,江苏南京210014;2.江苏大学食品与生物工程学院,江苏镇江212013)
Author(s):
ZHANG Yuan-yuan1LIU Wen-jing12ZHANG Bin-bin1MA Rui-juan1YU Ming-liang1
(1.Institute of Pomology, Jiangsu Academy of Agricultural Sciences/Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Nanjing 210014, China;2.School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China)
关键词:
内酯芳香物质环氧化物水解酶
Keywords:
peachlactones volatile compoundsepoxide hydrolases
分类号:
S662.1
DOI:
doi:10.3969/j.issn.1000-4440.2023.01.021
文献标志码:
A
摘要:
环氧化物水解酶(EH)因其重要的生物学功能而在哺乳动物以及诸多植物中被广泛关注,更是果实典型“桃香”气味——内酯芳香物质生物合成的一个重要酶,但在桃等果实中的研究较少且鲜有该家族成员的系统报道或生物学功能的解析。为鉴别桃果实中与内酯芳香物质合成相关的环氧化物水解酶家族成员,本研究使用了同源序列比对和关键词搜索等方法,在桃中共筛选获得7个环氧化物水解酶家族成员。序列比对分析结果表明,这7个成员均有典型的α/β水解酶折叠结构和环氧化物水解酶保守的序列片段。进化树分析结果显示,桃的环氧化物水解酶成员与拟南芥、烟草等其他物种中已被鉴别的环氧化物水解酶成员的亲缘关系很近。基因表达分析结果显示,在桃的发育成熟进程中7个EH基因均在果实的中果皮表达,在果实发育前期均呈现较高的表达水平,转录模式包括3种类型。综合已报道的内酯芳香物质的生物合成通路以及前人指出的内酯芳香物质含量在果实成熟期开始显著增加的变化规律,推测桃环氧化物水解酶成员的表达量可能与内酯芳香物质的积累负相关。本研究结果为后续深入挖掘桃或者其他果实环氧化物水解酶家族成员的生物学功能尤其是参与内酯芳香物质合成的分子机理提供了参考。
Abstract:
Epoxide hydrolases (EHs) were extensively characterized in mammals and numerous plant species for their multiple biological functions, and acted as one important enzyme in the biosynthesis of lactones——a group of volatile compounds which endowed fruit a typical peach-like aroma. However, there were few reports on the family members or biological functions of epoxide hydrolases in peach or other fruits. To identify the EH members involved in the biosynthesis of lactone volatile compounds in peach fruit, homologous sequence alignment and keyword search were used in this study. A total of seven EH family members were screened in peach, and sequence alignment analysis showed that they all had the typical α/β-hydrolase fold structure and conserved sequences. Phylogenetic tree analysis showed that EH members in peach were closely related to the identified EH members in Arabidopsis, tobacco and other plant species. The results of gene expression analysis indicated that these EH genes were expressed in the mesocarp of peach fruit during the development and maturation, and showed a high expression level in the early stages of fruit development. The transcription patterns included three types. Based on the reported biosynthetic pathways of lactones and the fact that the content of lactones began to increase significantly at fruit ripening stages, it was speculated that the expression levels of the epoxide hydrolase genes may be negatively correlated with the contents of lactones volatile compounds. Overall, these results lay a foundation for further exploration of the biological functions of EH family members in peach or other fruits, especially the molecular mechanism involved in the biosynthesis of lactone volatile compounds.

参考文献/References:

[1]王贵章,王贵禧,梁丽松,等. 桃果实芳香挥发物及其生物合成研究进展 [J].食品科学,2014,35(17):278-284.
[2]SCHTTLER M,BOLAND W. Biosynthesis of dodecano-4-lactone in ripening fruits: crucial role of an epoxide-hydrolase in enantioselective generation of aroma components of the nectarine (Prunus persica var. nucipersica) and the strawberry (Fragaria ananassa) [J]. Helvetica Chimica Acta,1996,79:1488-1496.
[3]ZOU J,HALLBERG B M,BERGFORS T,et al. Structure of Aspergillus niger epoxide hydrolase at 1.8 A resolution: implications for the structure and function of the mammalian microsomal class of epoxide hydrolases [J]. Structure,2000,8(2):111-122.
[4]盛艳旻. 环氧化物水解酶产生菌的筛选及其发酵条件和对苯基缩水甘油醚类化合物拆分条件的研究 [D]. 杭州:浙江工业大学,2010.
[5]陈文静. 绿豆环氧化物水解酶催化环氧苯乙烯不对称水解反应 [D]. 广州:华南理工大学,2012.
[6]NEWMAN J W,MORISSEAU C,HAMMOCK B D. Epoxide hydrolases: their roles and interactions with lipid metabolism [J]. Progress in Lipid Research,2005,44(1) :1-51.
[7]MORISSEAU C. Role of epoxide hydrolase in lipid metabolism [J]. Biochimie,2013,95(1):91-95.
[8]娄文勇,赵莹,彭飞,等. 环氧化物水解酶的研究进展 [J]. 华南师范大学学报(自然科学版),2017,49(6):1-6.
[9]BLE E,SCHUBER F. Occurrence of fatty acid epoxide hydrolases in soybean (Glycine max). Purification and characterization of the soluble form [J]. Biochemical Journal,1992,282(3):711-714.
[10]KIYOSUE T,BEETHAM J K,PINOT F,et al. Characterization of an Arabidopsis cDNA for a soluble epoxide hydrolase gene that is inducible by auxin and water stress [J]. The Plant Journal,1994,6(2):259-269.
[11]MORISSEAU C,BEETHAM J K,PINOT F,et al. Cress and potato soluble epoxide hydrolases: purification, biochemical characterization, and comparison to mammalian enzymes [J]. Archives of Biochemistry and Biophysics,2000,378(2):321-332.
[12]SUMMERER S,HANANO A,UTSUMI S,et al. Stereochemical features of the hydrolysis of 9,10-epoxystearic acid catalysed by plant and mammalian epoxide hydrolases [J]. Biochemical Journal,2002,366(2):471-480.
[13]MOWBRAY S L,ELFSTRM L T,AHLGREN K M,et al. X-ray structure of potato epoxide hydrolase sheds light on substrate specificity in plant enzymes [J]. Protein Science,2006,15(7):1628-1637.
[14]THOMAEUS A,NAWORYTA A,MOWBRAY S L,et al. Removal of distal protein-water hydrogen bonds in a plant epoxide hydrolase increases catalytic turnover but decreases thermostability [J]. Protein Science,2008,17:1275-1284.
[15]WIJEKOON C P,GOODWIN P H,VALLIANI M,et al. The role of a putative peroxisomal-targeted epoxide hydrolase of Nicotiana benthamiana in interactions with Colletotrichum destructivum, C. orbiculare or Pseudomonas syringae pv. tabaci [J]. Plant Science,2011,181(2):177-187.
[16]HUANG F C,SCHWAB W. Molecular characterization of NbEH1 and NbEH2, two epoxide hydrolases from Nicotiana benthamiana [J]. Phytochemistry,2013,90:6-15.
[17]CARLSSON  J,BAUER P,DOBRITZSCH D,et al. Laboratory evolved enzymes provide snapshots of the development of enantioconvergence in enzyme-catalyzed epoxide hydrolysis [J]. Chembiochem,2016,17(18):1693-1697.
[18]PINEAU E,XU L,RENAULT H,et al. Arabidopsis thaliana epoxide hydrolase1 (AtEH1) is a cytosolic epoxide hydrolase involved in the synthesis of poly-hydroxylated cutin monomers [J]. New Phytologist,2017,215:173-186.
[19]VECCHIETTI A,LAZZARI B,ORTUGNO C,et al. Comparative analysis of expressed sequence tags from tissues in ripening stages of peach (Prunus persica L. Batsch) [J]. Tree Genetics & Genomes,2009,5(3):377-391.
[20]PIRONA R,VECCHIETTI A,LAZZARI B,et al. Expression profiling of genes involved in the formation of aroma in two peach genotypes [J]. Plant Biology,2013,15(3):443-451.
[21]LI X W,JIANG J,ZHANG L P,et al. Identification of volatile and softening-related genes using digital gene expression profiles in melting peach [J]. Tree Genetics & Genomes,2015,11:1-15.
[22]ROBERT X,GOUET P. Deciphering key features in protein structures with the new ENDscript server [J]. Nucleic Acids Research,2014,42(1):320-324.
[23]ZHANG Y Y,YIN X R,XIAO Y W,et al. An ethylene response factor-MYB transcription complex regulates furaneol biosynthesis by activating quinone oxidoreductase expression in strawberry [J]. Plant Physiology,2018,178(1):189-201.
[24]TONG Z G,GAO Z H,WANG F,et al. Selection of reliable reference genes for gene expression studies in peach using real-time PCR [J]. BMC Molecular Biology,2009,10:1-13.
[25]OLLIS D L,CHEAH E,CYGLER M,et al. The α/β hydrolase fold [J]. Protein Engineering Design & Selection,1992,5(3):197-211.
[26]徐丽诗. α/β水解酶亚家族共进化网络的算法优化及功能预测 [D]. 上海:上海交通大学,2016.
[27]贾佳. 环氧化物水解酶序列识别和分类模型的构建 [D]. 杭州:浙江大学,2006.
[28]NEUTEBOOM L W,KUNIMITSU W Y,WEBB D,et al. Characterization and tissue-regulated expression of genes involved in pineapple (Ananas comosus L.) root development [J]. Plant Science,2002,163(5):1021-1035.
[29]EDQVIST J,FARBOS I. A germination-specific epoxide hydrolase from Euphorbia lagascae [J]. Planta,2003,216:403-412.
[30]郑柳城,朱宏波. 水稻水溶性环氧化合物水解酶的生物信息学分析 [J]. 生物信息学,2009,7(2):108-112, 139.
[31]ZHANG L P,LI H Y,GAO L,et al. Acyl-CoA oxidase 1 is involved in γ-decalactone release from peach (Prunus persica) fruit [J]. Plant Cell Reports,2017,36(6):829-842.
[32]PENG B,YU M L,ZHANG B B,et al. Differences in PpAAT1 Activity in high- and low-aroma peach varieties affect γ-decalactone production [J]. Plant Physiology,2020,182(4):2065-2080.

相似文献/References:

[1]蔡志翔,沈志军,马瑞娟,等.桃同株叶片杂色材料的MSAP分析[J].江苏农业学报,2016,(03):662.[doi:10.3969/j.issn.1000-4440.2016.03.027]
 CAI Zhi-xiang,SHEN Zhi-jun,MA Rui-juan,et al.Analysis of leaf-variegated peach by methylation-sensitive amplification polymorphism[J].,2016,(01):662.[doi:10.3969/j.issn.1000-4440.2016.03.027]
[2]廖亚运,张斌斌,马瑞娟,等.采前喷钙对金陵黄露桃钙吸收及细胞超微结构的影响[J].江苏农业学报,2016,(05):1171.[doi:10.3969/j.issn.1000-4440.2016.05.034]
 LIAO Ya-yun,ZHANG Bin-bin,MA Rui-juan,et al.Calcium absorption and cell ultrastructure of Jinlinghuanglu peach in response to pre-harvest calcium solutions spraying[J].,2016,(01):1171.[doi:10.3969/j.issn.1000-4440.2016.05.034]
[3]张杰伟,任飞,张中保,等.桃磷酸肌醇特异性磷脂酶 C 基因家族鉴定与分析[J].江苏农业学报,2017,(01):185.[doi:10.3969/j.issn.1000-4440.2017.01.030 ]
 ZHANG Jie-wei,REN Fei,ZHANG Zhong-bao,et al.Genome-wide analysis and identification of phosphoinositide-specific phospholipase C gene family in Lovell peach (Prunus persica L.)[J].,2017,(01):185.[doi:10.3969/j.issn.1000-4440.2017.01.030 ]
[4]严娟,宋志忠,蔡志翔,等.3种果肉颜色桃原花青素积累[J].江苏农业学报,2018,(03):651.[doi:doi:10.3969/j.issn.1000-4440.2018.03.025]
 YAN Juan,SONG Zhi-zhong,CAI Zhi-xiang,et al.Proanthocyanidin accumulation in peach fruit with three types of flesh color[J].,2018,(01):651.[doi:doi:10.3969/j.issn.1000-4440.2018.03.025]
[5]宋志忠,许建兰,张斌斌,等.叶面喷施钾肥对霞脆桃果实品质及KUP基因表达的影响[J].江苏农业学报,2018,(05):1107.[doi:doi:10.3969/j.issn.1000-4440.2018.05.020]
 SONG Zhi-zhong,XU Jian-lan,ZHANG Bin-bin,et al.Effect of foliar spraying of potassium fertilizer on Xiacui peach quality and expression of KUP transporter family genes[J].,2018,(01):1107.[doi:doi:10.3969/j.issn.1000-4440.2018.05.020]
[6]卯新蕊,李昊聪,申志慧,等.桃果实矿质元素与糖酸指标的相关性分析[J].江苏农业学报,2020,(01):164.[doi:doi:10.3969/j.issn.1000-4440.2020.01.023]
 MAO Xin-rui,LI Hao-cong,SHEN Zhi-hui,et al.Correlation analysis of mineral elements and sugar and acid contents in peach fruit[J].,2020,(01):164.[doi:doi:10.3969/j.issn.1000-4440.2020.01.023]
[7]程金金,吴世文,陈小龙,等.桃脆片加工过程中3种农药残留动态[J].江苏农业学报,2021,(02):517.[doi:doi:10.3969/j.issn.1000-4440.2021.02.030]
 CHENG Jin-jin,WU Shi-wen,CHEN Xiao-long,et al.Dynamics of three pesticide residues during the processing of peach crisps[J].,2021,(01):517.[doi:doi:10.3969/j.issn.1000-4440.2021.02.030]
[8]张斌斌,陈星星,王娜,等.基于果实品质指标的不同桃品种近冰温贮藏特性比较[J].江苏农业学报,2021,(04):998.[doi:doi:10.3969/j.issn.1000-4440.2021.04.024]
 ZHANG Bin-bin,CHEN Xing-xing,WANG Na,et al.Comparison of near-freezing temperature storage characteristics of different peach varieties based on fruit quality index[J].,2021,(01):998.[doi:doi:10.3969/j.issn.1000-4440.2021.04.024]
[9]徐子媛,严娟,蔡志翔,等.桃果实糖酸和酚类物质与口感风味的相关性[J].江苏农业学报,2022,38(01):190.[doi:doi:10.3969/j.issn.1000-4440.2022.01.023]
 XU Zi-yuan,YAN Juan,CAI Zhi-xiang,et al.Correlation between soluble sugar, organic acid and phenolic substances with tasted flavor in peach fruit[J].,2022,38(01):190.[doi:doi:10.3969/j.issn.1000-4440.2022.01.023]
[10]张春华,沈志军,马瑞娟,等.桃Ⅱ型NADH脱氢酶家族基因鉴定和表达分析[J].江苏农业学报,2022,38(04):1049.[doi:doi:10.3969/j.issn.1000-4440.2022.04.023]
 ZHANG Chun-hua,SHEN Zhi-jun,MA Rui-juan,et al.Identification and expression analysis of the type Ⅱ NADH dehydrogenase family genes in peach[J].,2022,38(01):1049.[doi:doi:10.3969/j.issn.1000-4440.2022.04.023]

备注/Memo

备注/Memo:
收稿日期:2022-07-06基金项目:国家自然科学基金项目(32002020);国家现代农业产业技术体系建设专项(CARS-30);江苏现代农业(桃)产业技术体系项目[JATS(2020)379、JATS(2021)425]作者简介:张圆圆(1990-),女,河南平顶山人,博士,助理研究员,从事果实芳香品质研究。(E-mail)20190021@jaas.ac.cn
更新日期/Last Update: 2023-03-21