[1]杨青青,杨峰,赵永强,等.大蒜热激转录因子基因AsHSFB1的克隆、亚细胞定位及其表达分析[J].江苏农业学报,2023,(01):169-177.[doi:doi:10.3969/j.issn.1000-4440.2023.01.020]
 YANG Qing-qing,YANG Feng,ZHAO Yong-qiang,et al.Cloning, subcellular localization and expression analysis of garlic heat shock transcription factor gene AsHSFB1[J].,2023,(01):169-177.[doi:doi:10.3969/j.issn.1000-4440.2023.01.020]
点击复制

大蒜热激转录因子基因AsHSFB1的克隆、亚细胞定位及其表达分析()
分享到:

江苏农业学报[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2023年01期
页码:
169-177
栏目:
园艺
出版日期:
2023-02-28

文章信息/Info

Title:
Cloning, subcellular localization and expression analysis of garlic heat shock transcription factor gene AsHSFB1
作者:
杨青青杨峰赵永强陆信娟刘灿玉葛洁张碧薇樊继德
(江苏徐淮地区徐州农业科学研究所,江苏徐州221121)
Author(s):
YANG Qing-qingYANG FengZHAO Yong-qiangLU Xin-juanLIU Can-yuGE JieZHANG Bi-weiFAN Ji-de
(Xuzhou Institute of Agricultural Sciences in Jiangsu Xuhuai Area, Xuzhou 221121, China)
关键词:
大蒜AsHSFB1基因同源重组技术亚细胞定位相对表达水平
Keywords:
garlicAsHSFB1 genehomologous recombination technologysubcellular localizationrelative expression level
分类号:
S633.4
DOI:
doi:10.3969/j.issn.1000-4440.2023.01.020
文献标志码:
A
摘要:
热激转录因子(HSF)基因是植物热胁迫响应的重要转录调节基因,在植物胁迫应答和其他抗逆反应过程中起着关键作用。为研究大蒜热激反应的分子机制,本研究基于大蒜转录组数据,以徐蒜6号为试验材料,采用同源克隆方法获得编码HSF的AsHSFB1基因。序列分析结果显示,AsHSFB1含有882 bp的开放阅读框,编码293个氨基酸,其蛋白质含有热激转录因子的特征结构域。在进化关系上,AsHSFB1与拟南芥AT4G11660(AtHSFB2B)同源性最高。亚细胞定位结果表明,AsHSFB1蛋白主要定位在细胞核和细胞质上。本研究采用同源重组技术成功构建pCAMBIA1305-AsHSFB1过表达载体,为进一步研究该转录因子基因的功能,培育耐热大蒜品种奠定基础。RT-PCR分析结果表明,不同大蒜品种中,AsHSFB1基因在叶片中相对表达水平均最高,具有组织表达特异性;38 ℃高温胁迫处理下,徐蒜6号中的AsHSFB1基因相对表达水平在24 h时明显上调;4 ℃低温胁迫下,徐蒜815和徐蒜6号中AsHSFB1基因相对表达水平的变化趋势相似,均先上升后下降,在处理4 h时相对表达水平达到峰值。
Abstract:
Heat shock transcription factor (HSF) is an important transcription regulation gene and plays a key role in plant stress response and other stress tolerance processes. In order to investigate the molecular mechanism of heat stress response in garlic, based on the transcriptome data of garlic, the experiment was conducted to obtain AsHSFB1 gene. This gene encoding HSF transcription factor was isolated by homologous cloning of Xusuan NO.6. Sequence analysis indicated that open reading frame (ORF) length of AsHSFB1 was 882 bp, encoding 293 amino acids. Its protein contained characteristic domain of heat shock transcription factor. Phylogenetic tree analysis result showed that AsHSFB1 was close to AT4G11660 (AtHSFB2B). Subcellular localization results showed that AsHSFB1 was mainly localized in the nucleus and cytoplasm. In this study, overexpression vector pCAMBIA1305-AsHSFB1 was successfully constructed by homologous recombination technology, which provided a theoretical basis for the subsequent study on the function of AsHSFB1 gene and the cultivation of heat-resistant garlic varieties. RT-PCR analysis showed that the relative expression level of AsHSFB1 gene in garlic leaves was highest, indicating that it had tissue specificity. Compared with the control, the relative expression level of AsHSFB1 gene in Xusuan No.6 increased significantly at 24 h under 38 ℃ high temperature stress. Under 4 ℃ low temperature stress, the relative expression level of AsHSFB1 gene in Xusuan No.6 and Xusuan 815 showed a similar trend, which increased first and then decreased and reached the peak at 4 h.

参考文献/References:

[1]HAIDER S, IQBAL J, NASEER S, et al. Unfolding molecular switches in plant heat stress resistance: a comprehensive review[J]. Plant Cell Reports, 2021,41(3): 775-798.
[2]RAZA A. Metabolomics: a systems biology approach for enhancing heat stress tolerance in plants[J]. Plant Cell Reports, 2020,41(3): 741-763.
[3]LIN Y X, JIANG H Y, CHU Z X, et al. Genome-wide identification, classification and analysis of heat shock transcription factor family in maize[J]. BMC Genomics, 2011, 12: 76.
[4]EFEOGLU B. Heat shock proteins and heat shock response in plants[J]. Gazi University Journal of Science, 2009, 22(2): 67-75.
[5]NEUDEDER T, VERGHESE J, HAYER-HARTL M, et al. Structure of human heat-shock transcription factor 1 in complex with DNA[J]. Nature Structural & Molecular Biology, 2016, 23(2): 140-146.
[6]PANCHUK I, VOLKOV R A, SCHOFFL F. Heat stress-and heat shock transcription factor-dependent expression and activity of ascorbate peroxidase in Arabidopsis[J]. Plant Physiology, 2002, 129(2): 838-853.
[7]段硕楠,李国良,张园园,等. 植物热激转录因子家族的多样性和复杂性研究进展 [J]. 中国农学通报, 2018, 34(35): 36-43.
[8]黄小云,陶鹏,李必元,等. 植物热激转录因子基因家族的研究进展 [J]. 浙江农业科学, 2014(9): 1323-1332,1336.
[9]SCHARF K D, ROSE S, ZOTT W, et al. Three tomato genes code for heat stress transcription factors with a region of remarkable homology to the DNA-binding domain of the yeast HSF[J]. The EMBO Journal, 1990, 9(13): 4495-4501.
[10]MISHRA S K, TRIPP J, WINKELHAUS S, et al. In the complex family of heat stress transcription factors, HsfA1 has a unique role as master regulator of thermotolerance in tomato[J]. Genes & Development, 2002, 16(12): 1555-1567.
[11]SCHRANN F, GANGULI A, KIEHMANN E, et al. The heat stress transcription factor HsfA2 serves as a regulatory amplifier of a subset of genes in the heat stress response in Arabidopsis[J]. Plant Molecular Biology, 2006, 60(5): 759-772.
[12]LI H C, ZHANG H N, LI G L, et al. Expression of maize heat shock transcription factor gene ZmHsf06 enhances the thermotolerance and drought-stress tolerance of transgenic Arabidopsis [J]. Functional Plant Biology, 2015, 42: 1080-1091.
[13]易瑾,罗弦,曹兴,等. 百合热激转录因子基因LlHSF1的克隆与表达分析[J]. 园艺学报, 2012, 39(11):2199-2205.
[14]陆伟,耿玉璐,郑宇茜,等. 热激转录因子在植物胁迫应答和生长发育中的作用 [J].分子植物育种, 2020, 18(3):905-914.
[15]TEJEDOR-CANO J, PRIETO-DAPENA P, ALMOGUERA C, et al. Loss of function of the HSFA9 seed longevity program [J]. Plant, Cell and Environment, 2010, 33(8): 1408-1417.
[16]ALMOGUERA C, ROJAS A, DIAZ-MARTIN J, et al. A seed-specific heat-shock transcription factor involved in developmental regulation during embryogenesis in sunflower[J]. Journal of Biological Chemistry, 2002, 277(46): 43866-43872.
[17]SHANG A, CAO S Y, XU X Y, et al. Bioactive compounds and biological functions of garlic (Allium sativum L.)[J]. Foods, 2019, 8(7): 246.
[18]ASTANEH R K, BOLANDNAZAR S, NAHANDI F Z, et al. The effects of selenium on some physiological traits and K, Na concentration of garlic (Allium sativum L.) under NaCl stress[J]. Information Processing In Agriculture, 2018, 5(1): 156-161.
[19]刘宏久,温艳斌,刘晓雪,等.大蒜分子生物学研究进展[J]. 园艺学报,2018,45 (9):1778-1790.
[20]卞诗村,陆雅妮,许吴俊,等. 大蒜生物钟基因AsRVE1和AsRVE2及其在渗透胁迫下的表达分析[J]. 园艺学报, 2021, 48(9):1706-1716.
[21] TAMURA K, PETERSON D, PETERSON N, et al. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods[J]. Molecular Biology and Evolution, 2011, 28(10):2731-2739.
[22] LIVAK K J, SCHMITTGEN T. Analysis of relative gene expression data using real-time quantitative PCR and the 2-△△Ct method[J]. Methods, 2001,25(4): 402-408.
[23] BANTI V, MAFESSONI F, LORETI E, et al. The heat-inducible transcription factor HSFA2 enhances anoxia tolerance in Arabidopsis [J]. Plant Physiology, 2010, 152(3): 1471-1483.
[24]赵立娜,段硕楠,张华宁,等. 玉米热激转录因子基因ZmHsf25的克隆、特性与耐热性功能分析 [J]. 作物学报, 2017, 43(7): 1021-1029.
[25]SCHARF K D, HEIDER H, HOHFELD I, et al. The tomato Hsf system: HsfA2 needs interaction with HsfA1 for efficient nuclear import and may be localized in cytoplasmic heat stress granules[J]. Molecular and Cellular Biology, 1998, 18(4):2240-2251.
[26]晁旭,王东平,巩振辉,等. 拟南芥热激转录因子耐高温功能分析[J]. 西北植物学报, 2007, 27(7):1305-1310
[27]BANIWAL S K, CHAN K Y, SCHARF K D, et al. Role of heat stress transcription factor HsfA5 as specific repressor of HsfA4 [J]. Journal of Biological Chemistry, 2007, 282(6): 3605-3613.
[28]MA H, WANG C, YANG B, et al. CarHSFB2, a class B heat shock transcription factor, is involved in different developmental processes and various stress responses in chickpea (Cicer arietinum L.) [J]. Plant Molecular Biology Reporter, 2016, 34: 1-14.
[29]ZHAO L, PAN H, SUNUN M, et al. Molecular cloning of Arabidopsis thaliana HSFA2 gene and Agrobacterium-mediated genetic transformation of Chrysanthemum morifolium Ramat[J]. Information Technology and Agricultural Engineering, 2012,134:827-834.
[30]王映红,张蓓,张楠,等. 魔芋AaHSFB1基因及其启动子的克隆与功能分析[J]. 生物工程学报, 2021, 37(12): 4351-4362.
[31]冯依,万雪丽,刘庆华,等. 香石竹热激转录因子基因DcHsfB1的克隆及其对不同非生物胁的表达响应[J]. 植物生理学报, 2019,55(7):975-982.
[32]李岩,徐志胜,谭国飞,等. 芹菜热激转录因子基因AgHSFB2的克隆及不同温度处理下的表达响应[J]. 南京农业大学学报, 2015, 38(3):360-368.

相似文献/References:

[1]孙艳军,史珑燕,徐刚,等.锌肥施用量对大蒜产量、品质及矿质元素含量的影响[J].江苏农业学报,2016,(04):891.[doi:10.3969/j.issn.100-4440.2016.04.028]
 SUN Yan-jun,SHI Long-yan,XU Gang,et al.Yield, quality and mineral element content of garlic in response to zinc fertilization[J].,2016,(01):891.[doi:10.3969/j.issn.100-4440.2016.04.028]
[2]王薇薇,郭军,梅燚,等.大蒜种质资源的综合评价与聚类分析[J].江苏农业学报,2017,(02):397.[doi:doi:10.3969/j.issn.1000-4440.2017.02.025]
 WANG Wei-wei,GUO Jun,MEI Yi,et al.Comprehensive evaluation and clustering analysis of garlic germplasm resources[J].,2017,(01):397.[doi:doi:10.3969/j.issn.1000-4440.2017.02.025]
[3]巫明焱,董光,税丽,等.基于Landsat 8影像的济宁市春季主要作物种植面积变化监测[J].江苏农业学报,2018,(03):559.[doi:doi:10.3969/j.issn.1000-4440.2018.03.012]
 WU Ming-yan,DONG Guang,SHUI Li,et al.Change detection of main spring crops area in Jining based on Landsat 8 images[J].,2018,(01):559.[doi:doi:10.3969/j.issn.1000-4440.2018.03.012]
[4]郭文琦,张培通,李春宏,等.大蒜苗期农艺性状与青蒜产量的关系[J].江苏农业学报,2018,(06):1319.[doi:doi:10.3969/j.issn.1000-4440.2018.06.017]
 GUO Wen-qi,ZHANG Pei-tong,LI Chun-hong,et al.The relationship between main agronomic traits and yield of garlic sprout during garlic seedling stage[J].,2018,(01):1319.[doi:doi:10.3969/j.issn.1000-4440.2018.06.017]
[5]高丹娜,吴淑华,涂丽琴,等.河南大蒜韭葱黄条病毒的分子鉴定及其系统进化分析[J].江苏农业学报,2020,(04):875.[doi:doi:10.3969/j.issn.1000-4440.2020.04.010]
 GAO Dan-na,WU Shu-hua,TU Li-qin,et al.Molecular identification and phylogenetic analysis of leek yellow stripe virus from garlic in Henan province[J].,2020,(01):875.[doi:doi:10.3969/j.issn.1000-4440.2020.04.010]

备注/Memo

备注/Memo:
收稿日期:2022-04-28基金项目:徐州市基础研究计划面上项目(KC21032);江苏省农业科学院探索性项目[ZX(21)1229]作者简介:杨青青(1994-),女,河南洛阳人,硕士,研究实习员,主要从事大蒜分子生物学研究。(E-mail)2521918664@qq.com通讯作者:樊继德,(E-mail)fanjide@163.com
更新日期/Last Update: 2023-03-21