参考文献/References:
[1]谢从华,柳俊.中国马铃薯从济荒作物到主粮之变迁[J].华中农业大学学报,2021,40(4):8-15.
[2]EREMINA M, ROZHON W, POPPENBERGER B. Hormonal control of cold stress responses in plants[J]. Cellular and Molecular Life Sciences, 2015, 73(4), 1-14.
[3]ZHU J. Abiotic stress signaling and responses in plants[J]. Cell, 2016, 167(2):313-324.
[4]ZAHRA S, NASER K, MUHAMMAD A F, et al. Plant Life Under Changing Environment[M]. Pittsburgh: Academic Press, 2020:397-466.
[5]BAND L R, NELISSEN H, PRESTON S P, et al. Modeling reveals posttranscriptional regulation of GA metabolism enzymes in response to drought and cold[J]. PNAS, 2022,119(31):e2121288119.
[6]DEGEFU M Y, TESEMA M. Review of gibberellin signaling[J]. International Journal of Engineering Applied Sciences and Technology, 2020, 4(9):377-390.
[7]GRIFFITHS J, MURASE K, RIEU I, et al. Genetic characterization and functional analysis of the GID1 gibberellin receptors in Arabidopsis[J]. Plant Cell, 2006, 18(12):3399-3414.
[8]MARTINEZ-BELLO L, MORITZ T, LOPEZ-DIAZ I. Silencing C19-GA 2-oxidases induces parthenocarpic development and inhibits lateral branching in tomato plants[J]. Journal of Experimental Botany, 2015, 66(19):5897-5910.
[9]HEDDEN P. The Current status of research on gibberellin biosynthesis[J]. Plant Cell Physiology, 2020, 61(11):1832-1849.
[10]PIMENTA-LANGE M J, SZPERLINSKI M, KALIX L, et al. Cucumber gibberellin 1-oxidase/desaturase initiates novel gibberellin catabolic pathways[J]. Journal of Biological Chemistry, 2020, 295:8442-8448.
[11]ACHARD P, GONG F, CHEMINANT S, et al. The cold-inducible CBF1 factor-dependent signaling pathway modulates the accumulation of the growth-repressing DELLA proteins via its effect on gibberellin metabolism[J]. Plant Cell, 2008, 20(8):2117-2129.
[12]RICHTER R, BASTAKIS E, SCHWECHHEIMER C. Cross-repressive interactions between SOC1 and the GATAs GNC and GNL/CGA1 in the control of greening, cold tolerance, and flowering time in Arabidopsis[J]. Plant Physiology, 2013, 162(4):1992-2004.
[13]HSIEH T H, LEE J T, YANG P T, et al. Heterology expression of the Arabidopsis C-repeat/dehydration response element binding factor 1 gene confers elevated tolerance to chilling and oxidative stresses in transgenic tomato[J]. Plant Physiology, 2002, 129(3):1086-1094.
[14]SHAN D, HUANG J, YANG Y, et al. Cotton GhDREB1 increases plant tolerance to low temperature and is negatively regulated by gibberellic acid[J]. New Phytologist, 2007, 176(1):70-81.
[15]ZHOU M Q, XU M, WU L H, et al. CbCBF from Capsella bursa-pastoris enhances cold tolerance and restrains growth in Nicotiana tabacum by antagonizing with gibberellin and affecting cell cycle signaling[J]. Plant Molecular Biology, 2014, 85:259-275.
[16]YAMAGUCHI S. Gibberellin metabolism and its regulation[J]. Annual Review of Plant Biology, 2008, 59:225-251.
[17]COLEBROOK E H, THOMAS S G, PHILLIPS A L, et al. The role of gibberellin signalling in plant responses to abiotic stress[J]. Journal of Experimental Botany, 2014, 217(1):67-75.
[18]LANGE M J P, LANGE T. Touch-induced changes in Arabidopsis morphology dependent on gibberellin breakdown[J]. Nature Plants, 2015, 1(3):14025.
[19]HEDDEN P, THOMAS S G. Gibberellin biosynthesis and its regulation[J]. Biochemical Journal, 2012, 444(1):11-25.
[20]LI K Q, XU X Y, HUANG X S. Identifcation of diferentially expressed genes related to dehydration resistance in a highly drought-tolerant pear, Pyrus betulaefolia, as through RNASeq[J]. PLoS One, 2016, 11(2):e0149352.
[21]LI Q, LEI S, DU K, et al. RNA-seq based transcriptomic analysis uncovers α-linolenic acid and jasmonic acid biosynthesis pathways respond to cold acclimation in Camellia japonica[J]. Scientific Reports, 2016, 6:36463.
[22]LO S F, HO T D, LIU Y L, et al. Ectopic expression of specific GA2 oxidase mutants promotes yield and stress tolerance in rice[J]. Plant Biotechnology Journal, 2017, 15(7):850-864.
[23]SHAN C, MEI Z, DUAN J, et al. OsGA2ox5, a gibberellin metabolism enzyme, is involved in plant growth, the root gravity response and salt stress[J]. PLoS One, 2014, 9(1):e87110.
[24]HSIEH K T, CHEN Y T, HU T J, et al. Comparisons within the rice GA2-oxidase gene family revealed three dominant paralogs and a functional attenuated gene that led to the identification of four amino acid variants associated with GA deactivation capability[J]. Rice, 2021, 14(1):70.
[25]LO S F, YANG S Y, CHEN K T, et al. A novel class of gibberellin 2-oxidases control semidwarfism, tillering, and root development in rice[J]. Plant Cell, 2008, 20(10):2603-2618.
[26]PEARCE S, HUTTLY A K, PROSSER I M, et al. Heterologous expression and transcript analysis of gibberellin biosynthetic genes of grasses reveals novel functionality in the GA3ox family[J]. BMC Plant Biology, 2015, 15(1):130.
[27]KIM G B, SON S U, YU H J, et al. MtGA2ox10 encoding C20-GA2-oxidase regulates rhizobial infection and nodule development in Medicago truncatula[J]. Scientific Reports, 2019, 9(1):5952.
[28]THEO L, PIMENTA L. The multifunctional dioxygenases of gibberellin synthesis[J]. Plant Cell Physiol, 2020, 61(11):1869-1879.
[29]赵亮,狄佳春,陈旭升. 棉花基因组中赤霉素氧化酶基因的鉴定与分析[J]. 江苏农业学报, 2020, 36(3): 553-560.
[30]SCHOMBURG F M, BIZZELL C M, LEE D J, et al. Overexpression of a novel class of gibberellin 2-oxidases decreasesgibberellin levels and creates dwarf plants[J]. Plant Cell, 2003, 15(1):151-163.
[31]LEE D J, ZEEVAART J A. Molecular cloning of GA 2-oxidase3 from spinach and its ectopic expression in Nicotiana sylvestris[J]. Plant Physiology, 2005, 138(1):243-254.
[32]HUANG Y, WANG X, GE S, et al. Divergence and adaptive evolution of the gibberellin oxidase genes in plants[J]. BMC Ecology and Evolution, 2015, 15(1):207.
[33]DUARTE J M, CUI L, WALL P K, et al. Expression pattern shifts following duplication indicative of subfunctionalization and neofunctionalization in regulatory genes of Arabidopsis[J]. Molecular biology and evolution, 2006, 23(2):469-478.
[34]QIAN W, LIAO B Y, CHANG A Y, et al. Maintenance of duplicate genes and their functional redundancy by reduced expression[J]. Trends in Genetics, 2010, 26(10):425-430.
[35]ZHANG J. Genetic redundancies and their evolutionary maintenance[J]. Advances In Experimental Medicine And Biology, 2012, 751:279-300.
[36]ILLOUZ-ELIAZ N, RAMON U, SHOHAT H, et al. Multiple gibberellin receptors contribute to phenotypic stability under changing environments[J]. Plant Cell, 2019, 31(7):1506-1519.
[37]HE H,LIANG G,LU S, et al. Genome-wide identification and expression analysis of GA2ox, GA3ox, and GA20ox are related to gibberellin oxidase genes in grape (Vitis vinifera L.)[J]. Genes, 2019, 10(9):680.
[38]LI C, ZHENG L, WANG X, et al. Comprehensive expression analysis of Arabidopsis GA2-oxidase genes and their functional insights[J]. Plant Science, 2019, 285:1-13.
[39]CHENG J, MA J, ZHENG X, et al. Functional analysis of the gibberellin 2-oxidase gene family in peach[J]. Frontiers in Plant Science, 2021, 12:619158.
[40]LI Y, SHAN X, JIANG Z, et al. Genome-wide identification and expression analysis of the GA2ox gene family in maize (Zea mays L.) under various abiotic stress conditions[J]. Plant Physiology and Biochemistry, 2021, 166: 621-633.
[41]ZHANG C H, NIE X, KONG W L, et al. Genome-wide identification and evolution analysis of the gibberellin oxidase gene family in six gramineae c rops[J]. Genes, 2022,13(5):863.
[42]安珍,张茹艳,周春涛,等. 铁肥对马铃薯生理特性、产量及品质的影响[J].江苏农业学报,2022,38(4):931-938.
[43]张中宁,张晨霞,吴莘玲,等. 种植密度对马铃薯产量和淀粉品质的影响[J].江苏农业科学,2022,50(7):59-66.
[44]肖熙鸥,林文秋,陈卓,等. 马铃薯抗青枯病育种研究进展[J].江苏农业学报,2021,37(5):1344-1351.
[45]翟鑫娜,张云帅,刘毅强, 等. 马铃薯耐低氮材料的筛选[J].江苏农业科学,2022,50(6):82-87.
[46]陈哲,王祥和,周文静,等. 荔枝GA2ox基因家族的鉴定及表达分析[J].分子植物育种, 2021, 19(14):4626-4636.
[47]马李广,张贺龙,庞小可,等. 白菜bZIP转录因子基因家族应答春化反应关键基因表达分析[J]. 江苏农业学报, 2022, 38(3):765-774.
[48]WANG Y, CUI Y, HU G, et al. Reduced bioactive gibberellin content in rice seeds under low temperature leads to decreased sugar consumption and low seed germination rates[J]. Plant Physiology and Biochemistry, 2018, 133:1-10.
[49]CHENG Z, LUAN Y, MENG J, et al. WRKY transcription factor response to high-temperature stress[J]. Plants, 2021, 10(10):2211.
相似文献/References:
[1]何虎翼,谭冠宁,何新民,等.63 份马铃薯品种(系)资源农艺性状的主成分与聚类分析[J].江苏农业学报,2017,(01):27.[doi:10.3969/j.issn.1000-4440.2017.01.005
]
HE Hu-yi,TAN Guan-ning,HE Xin-min,et al.Principal component and cluster analysis for agronomic traits of 63 potato varieties or clones[J].,2017,(05):27.[doi:10.3969/j.issn.1000-4440.2017.01.005
]
[2]徐玉伟,印敬明,白潇,等.马铃薯 StPYL1 和 StPYL8 基因的分子克隆与表达分析[J].江苏农业学报,2015,(01):23.[doi:10.3969/j.issn.1000-4440.2015.01.004]
XU Yu-wei,YIN Jing-ming,BAI Xiao,et al.Molecular cloning and expression analysis of potato StPYL1 and StPYL8 genes[J].,2015,(05):23.[doi:10.3969/j.issn.1000-4440.2015.01.004]
[3]亢艳莉,申双和,张学艺,等.气候变化对宁夏南部山区马铃薯产量的影响及马铃薯水分供需特征分析[J].江苏农业学报,2017,(05):1056.[doi:doi:10.3969/j.issn.1000-4440.2017.05.015]
KANG Yan-li,SHEN Shuang-he,ZHANG Xue-yi,et al.Effect of climate change on potato yield of Ningxia southern mountainous area and analysis of characteristics of water supply and demand in potato[J].,2017,(05):1056.[doi:doi:10.3969/j.issn.1000-4440.2017.05.015]
[4]王卓卓,何英彬,罗善军,等.基于冠层高光谱数据与马氏距离的马铃薯品种识别[J].江苏农业学报,2018,(05):1036.[doi:doi:10.3969/j.issn.1000-4440.2018.05.010]
WANG Zhuo-zhuo,HE Ying-bin,LUO Shan-jun,et al.Variety identification of potatoes based on canopy hyperspectral data and Mahalanobis distance[J].,2018,(05):1036.[doi:doi:10.3969/j.issn.1000-4440.2018.05.010]
[5]许伟栋,赵忠盖.基于卷积神经网络和支持向量机算法的马铃薯表面缺陷检测[J].江苏农业学报,2018,(06):1378.[doi:doi:10.3969/j.issn.1000-4440.2018.06.025]
XU Wei-dong,ZHAO Zhong-gai.Potato surface defects detection based on convolution neural networks and support vector machine algorithm[J].,2018,(05):1378.[doi:doi:10.3969/j.issn.1000-4440.2018.06.025]
[6]黄强,郑顺林,郭函,等.氮增效剂对马铃薯叶片及土壤氮的影响[J].江苏农业学报,2019,(05):1087.[doi:doi:10.3969/j.issn.1000-4440.2019.05.013]
HUANG Qiang,ZHENG Shun-lin,GUO Han,et al.Effects of nitrogen synergist on nitrogen in potato leaves and soil[J].,2019,(05):1087.[doi:doi:10.3969/j.issn.1000-4440.2019.05.013]
[7]许建民,颜志明,史培华,等.不同光谱及其组合对马铃薯干物质积累和分配的影响[J].江苏农业学报,2020,(01):32.[doi:doi:10.3969/j.issn.1000-4440.2020.01.005]
XU Jian-min,YAN Zhi-ming,SHI Pei-hua,et al.Effects of different spectra and their combinations on dry matter accumulation and distribution in potato[J].,2020,(05):32.[doi:doi:10.3969/j.issn.1000-4440.2020.01.005]
[8]许建民,刘艳,颜志明,等.不同光谱对马铃薯种薯品质的影响[J].江苏农业学报,2020,(05):1105.[doi:doi:10.3969/j.issn.1000-4440.2020.05.005]
XU Jian-min,LIU Yan,YAN Zhi-ming,et al.Effects of different spectra on quality of seed potato[J].,2020,(05):1105.[doi:doi:10.3969/j.issn.1000-4440.2020.05.005]
[9]杨茜,刘吉利,贺锦红,等.栽培模式对宁南地区马铃薯生理特性及产量的影响[J].江苏农业学报,2021,(03):555.[doi:doi:10.3969/j.issn.1000-4440.2021.03.002]
YANG Qian,LIU Ji-li,HE Jin-hong,et al.Effects of cultivation pattern on physiological characteristics and yield of potatoes planted in southern Ningxia[J].,2021,(05):555.[doi:doi:10.3969/j.issn.1000-4440.2021.03.002]
[10]肖熙鸥,林文秋,陈卓,等.马铃薯抗青枯病育种研究进展[J].江苏农业学报,2021,(05):1344.[doi:doi:10.3969/j.issn.1000-4440.2021.05.033]
XIAO Xi-ou,LIN Wen-qiu,CHEN Zhuo,et al.Research advances in potato breeding for bacterial wilt resistance[J].,2021,(05):1344.[doi:doi:10.3969/j.issn.1000-4440.2021.05.033]