[1]李想,冯建英,鲁黎明,等.马铃薯bZIP家族的鉴定与表达分析[J].江苏农业学报,2022,38(06):1453-1464.[doi:doi:10.3969/j.issn.1000-4440.2022.06.002]
 LI Xiang,FENG Jian-ying,LU Li-ming,et al.Identification and expression analysis of bZIP family in potato[J].,2022,38(06):1453-1464.[doi:doi:10.3969/j.issn.1000-4440.2022.06.002]
点击复制

马铃薯bZIP家族的鉴定与表达分析()
分享到:

江苏农业学报[ISSN:1006-6977/CN:61-1281/TN]

卷:
38
期数:
2022年06期
页码:
1453-1464
栏目:
遗传育种·生理生化
出版日期:
2022-12-31

文章信息/Info

Title:
Identification and expression analysis of bZIP family in potato
作者:
李想冯建英鲁黎明李立芹
(四川农业大学农学院,四川成都611130)
Author(s):
LI XiangFENG Jian-yingLU Li-mingLI Li-qin
(College of Agronomy, Sichuan Agricultural University, Chengdu 611130, China)
关键词:
马铃薯bZIP基因表达模式非生物胁迫
Keywords:
potatobZIP geneexpression patternabiotic stress
分类号:
S532.01
DOI:
doi:10.3969/j.issn.1000-4440.2022.06.002
文献标志码:
A
摘要:
为探索马铃薯中bZIP的功能,对马铃薯bZIP基因家族进行鉴定,分析其系统进化关系、染色体定位、植物组织表达模式,并对非生物逆境胁迫条件下的转录组数据进行分析。利用荧光定量PCR技术检测12个bZIP基因在马铃薯根、茎、叶以及在干旱、低钾、高盐、脱落酸(ABA)和H2O2等胁迫下的表达情况。通过对马铃薯bZIP转录因子进行全基因组检索,得到104个bZIP基因家族成员。其编码的bZIP转录因子保守结构域长度为21~79 aa,相对分子质量为13 088.03~88 180.52,等电点为5.02~9.96,均属于亲水蛋白质。利用在线软件MEME对bZIP家族成员的蛋白质全长氨基酸序列进行结构分析,并根据其结构进行相似性聚类,共得到20个Motif,其中Motif1存在于104个bZIP中,为bZIP家族的特征基序。根据进化树分析结果,将马铃薯bZIP家族分为10个亚族。基于转录组数据的表达模式分析结果表明,马铃薯bZIP成员广泛参与ABA、盐、干旱等非生物胁迫响应。qPCR分析结果显示,马铃薯bZIP家族成员还能够在低钾、H2O2胁迫应答中发挥作用。综合分析可知,马铃薯bZIP家族基因广泛参与了非生物胁迫响应,研究结果为马铃薯bZIP家族的功能研究奠定了基础。
Abstract:
To explore the function of bZIP in potato, the bZIP gene family in potato was identified, and its phylogenetic relationship, chromosome mapping, plant tissue expression pattern and transcriptome data under abiotic stress conditions were analyzed. Fluorescence quantitative PCR was used to detect the expression of 12 bZIP genes in roots, stems, leaves and under drought, low potassium, high salt, abscisic acid (ABA) and H2O2 stress. A total of 104 bZIP gene family members were obtained by genome-wide retrieval of potato bZIP transcription factors. The length of the conserved domain ranged from 21 aa to 79 aa, the relative molecular weight ranged from 13 088.03 to 88 180.52, and the isoelectric point ranged from 5.02 to 9.96. They were all hydrophilic proteins. The structure of the full-length amino acid sequence of bZIP family members was analyzed by MEME, and the similarity clustering was performed according to its structure. A total of 20 motifs were obtained. Motif1 was found in 104 bZIPs and was the characteristic motif of the bZIP family. According to the results of phylogenetic tree analysis, the potato bZIP family was divided into ten subgroups. Analysis of expression patterns based on transcriptome data indicated that potato bZIP members were extensively involved in abiotic stress responses such as ABA, salt, and drought. The results of qPCR analysis showed that bZIP family members could also play a role in response to low potassium and H2O2 stress. Genes of the potato bZIP family are widely involved in the response to abiotic stress, and the results of this study can lay a foundation for the functional study of the potato bZIP family.

参考文献/References:

[1]TULLY J P, HILL A E, AHMED H M R, et al. Expression-based network biology identifies immune-related functional modules involved in plant defense[J]. BMC Genomics, 2014,15(1):421.
[2]薛翀,邱诗蕊,李虹,等. 烟草bZIP基因家族的鉴定及其A亚族在ABA处理下的表达分析[J]. 分子植物育种,2020,18(17):5607-5621.
[3]樊松乐,王纪坤,覃碧,等. 植物转录因子研究方法及应用[J]. 分子植物育种,2019,17(15):5003-5009.
[4]SHEN L, LIU Z Q, YANG S, et al. Pepper CabZIP63 acts as a positive regulator during Ralstonia solanacearum or high temperature-high humidity challenge in a positive feedback loop with CaWRKY40[J]. Journal of Experimental Botany, 2016,67(8): 2439-2451.
[5]NOMAN A, LIU Z, AQEEL M, et al. Basic leucine zipper domain transcription factors: the vanguards in plant immunity[J]. Biotechnology Letters, 2017, 39(3): 1779-1791.
[6]ZHOU Z Z, XU M, LI L. Research progress on molecular resistance breeding in potato[J]. Crop Research, 2015,29(5): 550-554.
[7]WINGENDER E, CHEN X, FRICKE E, et al. The TRANSFAC system on gene expression regulation[J]. Nucleic Acid Research, 2001, 29(1): 281-283.
[8]JAKOBY M, WEISSHAAR B, DRGE-LASER W, et al. bZIP transcription factors in Arabidopsis[J]. Trends in Plant Science, 2002, 7(3): 106-111.
[9]TANG W, RU Y Y, HONG L, et al. System-wide characterization of bZIP transcription factor proteins involved in infection-related morphogenesis of Magnaporthe oryzae[J]. Environmental Microbiology, 2015,17: 1377-1396.
[10]ZHANG M, LIU Y H, SHI H, et al. Evolutionary and expression analyses of soybean basic leucine zipper transcription factor family[J]. BMC Genomics, 2018, 19(1): 159.
[11]LIU J Y, CHEN N N, CHEN F, et al. Genome-wide analysisand expression profile of the bZIP transcription factor gene family in grapevine (Vitis vinifera)[J]. BMC Genomics, 2014, 15(1): 281.
[12]魏瑞敏,郑井元,刘峰,等. 辣椒bZIP家族基因的鉴定与表达分析[J]. 园艺学报,2018,45(8):1535-1550.
[13]邢宇鹏. 棉花bZIP基因家族全基因组鉴定及分析[D]. 泰安:山东农业大学,2020.
[14]张珍珠,陈秀玲,王沛文,等. 番茄bZIP基因家族的系统进化分析[J]. 东北农业大学学报,2014,45(9):47-55.
[15]赵姣.苹果bZIP家族基因的鉴定、表达分析及葡萄WRKY48基因的功能分析[D]. 杨凌:西北农林科技大学,2017.
[16]王星文,吴端,师玉华,等. 黄花蒿bZIP转录因子基因家族及光调控表达模式分析[J]. 世界科学技术-中医药现代化,2021,23(1):20-32.
[17]HSIEH T, LI C, SU R, et al. A tomato bZIP transcription factor, SlAREB, is involved in water deficit and salt stress response[J]. Planta, 2012, 231(6):1459-1473.
[18]WANG Y C, GAO C, LIANG Y, et al. A novel bZIP gene from Tamarix hispida mediates physiological responses to salt stress in tobacco plants[J]. Journal of Plant Physiology,2010,167(3):222-230.
[19]LIU G T, WANG J F, CRAMER G, et al. Transcriptomic analysis of grape (Vitis vinifera L.)leaves during and after recovery from heat stress[J]. BMC Plant Biology, 2012,12(174):365-370.
[20]TAK H, MHATRE M. Cloning and molecular characterization of a putative bZIP transcription factor VvbZIP23 from Vitis vinifera[J]. Protoplasma, 2013,250:333-345.
[21]SILVEIRA A B, GAUER L, TOMAZ J P, et al. The Arabidopsis AtbZIP9 protein fused to the VP16 transcriptional activation domain alters leaf and vascular development[J]. Plant Science, 2007,172(6):1148-1156.
[22]CHUANG C F, RUNING M P, WILLIAMS R W, et al. The PERIANTHIA gene encodes a bZIP protein involved in the determination of floral organ number in Arabidopsis thaliana[J]. Genes & Development, 1999,13(3):334-344.
[23]CHEN H, CHEN W, ZHOU J L, et al. Basic leucine zipper transcription factor OsbZIP16 positively regulates drought resistance in rice[J]. Plant Science, 2012,193/194:8-17.
[24]王帆. 苹果MdbZIP26基因表达模式及其启动子的功能分析[D]. 杨凌:西北农林科技大学,2019.
[25]ZHANG X, WANG L, MENG H, et al. Maize ABP9 enhances tolerance to multiple stresses in transgenic Arabidopsis by modulating ABA signaling and cellular levels of reactive oxygen species[J]. Plant Journal, 2011, 34(2):137-148.
[26]HAWKES J G. The potato, evolution, biodiversity and genetic resources[M]. London: Belhaven Press, 1990.
[27]CHEN W M, CAI R L, LIN L, Strategic conception of boosting potato staple food normalization[J]. Guizhou Agricultural Sciences, 2016, 44(1): 182-185.
[28]于滔,王成波,曹士亮,等. 玉米bZIP转录因子的生物信息学分析[J]. 黑龙江农业科学,2016(4):1-5.
[29]马晓闻,周思泓,王丹玉,等. 基于转录组分析筛选牛心朴子响应低温胁迫的转录因子家族[J].南方农业学报,2020,51(5):995-1003.
[30]邰玉玲,杨林,王欢欢,等. 茶特征成分合成相关新转录因子鉴定[J].江苏农业学报,2021,37(6):1534-1544.
[31]ESHAGHI M, LEE J H, ZHU L, et al. Genomic binding profiling of the fission yeast stress-activated MAPK Sty1 and the bZIP transcriptional activator Atf1 in response to H2O2[J]. PLoS One, 2010,5(7): e11620.
[32]林延慧,唐力琼,徐靖,等.大豆响应涝害bZIP基因Glyma04g04170的生物信息学分析及互作蛋白预测[J]. 大豆科学,2020,39(5):727-733.

相似文献/References:

[1]何虎翼,谭冠宁,何新民,等.63 份马铃薯品种(系)资源农艺性状的主成分与聚类分析[J].江苏农业学报,2017,(01):27.[doi:10.3969/j.issn.1000-4440.2017.01.005 ]
 HE Hu-yi,TAN Guan-ning,HE Xin-min,et al.Principal component and cluster analysis for agronomic traits of 63 potato varieties or clones[J].,2017,(06):27.[doi:10.3969/j.issn.1000-4440.2017.01.005 ]
[2]徐玉伟,印敬明,白潇,等.马铃薯 StPYL1 和 StPYL8 基因的分子克隆与表达分析[J].江苏农业学报,2015,(01):23.[doi:10.3969/j.issn.1000-4440.2015.01.004]
 XU Yu-wei,YIN Jing-ming,BAI Xiao,et al.Molecular cloning and expression analysis of potato StPYL1 and StPYL8 genes[J].,2015,(06):23.[doi:10.3969/j.issn.1000-4440.2015.01.004]
[3]亢艳莉,申双和,张学艺,等.气候变化对宁夏南部山区马铃薯产量的影响及马铃薯水分供需特征分析[J].江苏农业学报,2017,(05):1056.[doi:doi:10.3969/j.issn.1000-4440.2017.05.015]
 KANG Yan-li,SHEN Shuang-he,ZHANG Xue-yi,et al.Effect of climate change on potato yield of Ningxia southern mountainous area and analysis of characteristics of water supply and demand in potato[J].,2017,(06):1056.[doi:doi:10.3969/j.issn.1000-4440.2017.05.015]
[4]王卓卓,何英彬,罗善军,等.基于冠层高光谱数据与马氏距离的马铃薯品种识别[J].江苏农业学报,2018,(05):1036.[doi:doi:10.3969/j.issn.1000-4440.2018.05.010]
 WANG Zhuo-zhuo,HE Ying-bin,LUO Shan-jun,et al.Variety identification of potatoes based on canopy hyperspectral data and Mahalanobis distance[J].,2018,(06):1036.[doi:doi:10.3969/j.issn.1000-4440.2018.05.010]
[5]许伟栋,赵忠盖.基于卷积神经网络和支持向量机算法的马铃薯表面缺陷检测[J].江苏农业学报,2018,(06):1378.[doi:doi:10.3969/j.issn.1000-4440.2018.06.025]
 XU Wei-dong,ZHAO Zhong-gai.Potato surface defects detection based on convolution neural networks and support vector machine algorithm[J].,2018,(06):1378.[doi:doi:10.3969/j.issn.1000-4440.2018.06.025]
[6]黄强,郑顺林,郭函,等.氮增效剂对马铃薯叶片及土壤氮的影响[J].江苏农业学报,2019,(05):1087.[doi:doi:10.3969/j.issn.1000-4440.2019.05.013]
 HUANG Qiang,ZHENG Shun-lin,GUO Han,et al.Effects of nitrogen synergist on nitrogen in potato leaves and soil[J].,2019,(06):1087.[doi:doi:10.3969/j.issn.1000-4440.2019.05.013]
[7]许建民,颜志明,史培华,等.不同光谱及其组合对马铃薯干物质积累和分配的影响[J].江苏农业学报,2020,(01):32.[doi:doi:10.3969/j.issn.1000-4440.2020.01.005]
 XU Jian-min,YAN Zhi-ming,SHI Pei-hua,et al.Effects of different spectra and their combinations on dry matter accumulation and distribution in potato[J].,2020,(06):32.[doi:doi:10.3969/j.issn.1000-4440.2020.01.005]
[8]许建民,刘艳,颜志明,等.不同光谱对马铃薯种薯品质的影响[J].江苏农业学报,2020,(05):1105.[doi:doi:10.3969/j.issn.1000-4440.2020.05.005]
 XU Jian-min,LIU Yan,YAN Zhi-ming,et al.Effects of different spectra on quality of seed potato[J].,2020,(06):1105.[doi:doi:10.3969/j.issn.1000-4440.2020.05.005]
[9]杨茜,刘吉利,贺锦红,等.栽培模式对宁南地区马铃薯生理特性及产量的影响[J].江苏农业学报,2021,(03):555.[doi:doi:10.3969/j.issn.1000-4440.2021.03.002]
 YANG Qian,LIU Ji-li,HE Jin-hong,et al.Effects of cultivation pattern on physiological characteristics and yield of potatoes planted in southern Ningxia[J].,2021,(06):555.[doi:doi:10.3969/j.issn.1000-4440.2021.03.002]
[10]肖熙鸥,林文秋,陈卓,等.马铃薯抗青枯病育种研究进展[J].江苏农业学报,2021,(05):1344.[doi:doi:10.3969/j.issn.1000-4440.2021.05.033]
 XIAO Xi-ou,LIN Wen-qiu,CHEN Zhuo,et al.Research advances in potato breeding for bacterial wilt resistance[J].,2021,(06):1344.[doi:doi:10.3969/j.issn.1000-4440.2021.05.033]

备注/Memo

备注/Memo:
收稿日期:2022-07-11基金项目:四川省科技厅项目(2018JY0078)作者简介:李想(1997-),男,辽宁阜新人,硕士研究生,研究方向为植物分子生物学。(E-mail)lixiang4337@163.com通讯作者:李立芹,(E-mail)liliqin88@163.com
更新日期/Last Update: 2023-01-13