[1]李春雷,倪德江.氟对幼龄茶树叶绿素含量及抗氧化酶活性的影响[J].江苏农业学报,2015,(05):1149-1153.[doi:doi:10.3969/j.issn.1000-4440.2015.05.032]
 LI Chun-lei,NI De-jiang.Chlorophyll content and antioxidation of young tea plant exposed to fluoride[J].,2015,(05):1149-1153.[doi:doi:10.3969/j.issn.1000-4440.2015.05.032]
点击复制

氟对幼龄茶树叶绿素含量及抗氧化酶活性的影响()
分享到:

江苏农业学报[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2015年05期
页码:
1149-1153
栏目:
园艺
出版日期:
2015-10-31

文章信息/Info

Title:
Chlorophyll content and antioxidation of young tea plant exposed to fluoride
作者:
李春雷12倪德江2
(1.潍坊科技学院,山东寿光262700;2.华中农业大学园艺林学学院/园艺植物生物学教育部重点实验室,湖北武汉430070)
Author(s):
LI Chun-lei12NI De-jiang2
(1.Weifang University of Science & Technology, Shouguang 262700, China;2.College of Horticulture and Forestry Science, Huazhong Agricultural University/Key Laboratory of Horticultural Plant Biology, Wuhan 430070, China)
关键词:
茶树叶绿素类胡萝卜素抗氧化酶
Keywords:
Camellia sinensis (L.)fluoridechlorophyll contentcarotenoidantioxidative enzyme
分类号:
S571.1
DOI:
doi:10.3969/j.issn.1000-4440.2015.05.032
文献标志码:
A
摘要:
为了探讨氟对茶树生理的影响,本试验以1年生福鼎大白茶树为试验材料,采用水培法,进行氟处理(F=16 mg/L),研究氟对茶树叶片叶绿素、类胡萝卜素含量及保护性酶的影响。结果显示,随着处理时间的延长,茶树叶片中氟含量显著升高;氟处理下叶绿素a、叶绿素b及总叶绿素含量均低于对照,叶绿素a/b显著高于对照,氟对叶绿素b的影响大于叶绿素a,氟对类胡萝卜素含量影响不显著。氟处理后,茶树叶片中超氧化物歧化酶(SOD)活性显著下降,氟处理72 h时比对照下降22.8%,比氟处理0 h时下降24.48%;氟处理后,茶树叶片中过氧化物酶(POD)和过氧化氢酶(CAT)均是先升高后降低,均是在氟处理48 h达到最大值,其中POD活性分别比0 h及对照48 h时增大31.47%和46.51%, CAT活性分别比氟处理0 h及对照48 h时增大36.79%和30.17%;MDA和H2O2含量随着处理时间的延长变化不大。
Abstract:
One-year-old cuttings ofCamellia sinensis (L.) O. Kuntze cv. Fudingdabai were grown hydroponically in order to study the effects of fluoride (F=16mg/L)on chlorophyll content, carotenoid content and antioxidative enzymes in tea plant. The results showed that the content of leaf fluoride was significantly increased over time . Under fluoride stress,chlorophyll a,chlorophyll b and total chlorophyll were lower while the ratio of chl.a to chl.b was higher than those in control, indicating that fluoride had a more significant effect on chl. b than on chl. a. The carotenoid contents changed little. Superoxide dismutase (SOD) activity was reduced by 22.80% 72 h post treatment compared with control and was reduced by 24.48% after 72-h treatment. Peroxidase (POD) and catalase (CAT) activities reached their maximum at 48 h and declined afterwards. CAT activity was 36.79% and 30.17% higher than that at the beginning of the treatment and that of CK 48 h post treatment. The contents of malondialdehyde (MDA) and hydrogen peroxide (H2O2) were kept stable over time POD activity was 31.47% and 46.51% higher than that at the beginning of the treatment and that of CK 48 h posttreatment.

参考文献/References:

[1]陈瑞鸿,梁月荣,陆建良,等.茶树对氟富集作用的研究[J].茶叶,2002,28(4):187-190.
[2]FUNG K F, ZHANG Z Q, WONG J W C, et al. Fluoride contents in tea and soil from tea plantations and the release of fluoride into tea liquor during infusion[J]. Environ Pollut, 2011, 104:197-205.
[3]SOFUOGLU S C,KAVCAR P. An exposure and risk assessment for fluoride and trace metals in black tea[J]. J Hazard Mater, 2008, 158:392-400.
[4]LI C L, NI D J. Effect of fluoride on chemical constituents of tea leaves[J]. Fluoride, 2009, 42(3): 237- 243.
[5]LI C L, YANG X, HU J H, et al. Effect of fluoride on aroma of tea leaves[J]. Fluoride, 2013, 46(1): 25-28.
[6]王丽霞,汤举红,肖斌,等. 氟对茶树生长、叶片营养元素含量、儿茶素类物质和香气成分的影响[J].植物营养与肥料学报, 2014,20(2):429-436.
[7]LI C L, ZHENG Y N, ZHOU J R, et al. Changes of leaf antioxidant system, photosynthesis and ultrastructure in tea plant under the stress of fluoride[J]. Biologia Plantarum, 2011, 55(3):563-566
[8]王小平,刘鹏,罗虹,等. 铝氟交互处理对茶树生理特性的影响[J].园艺学报, 2009, 36(9):1359- 1364.
[9]蔡荟梅,董阳阳,陈贵杰,等. 氟胁迫对茶树氟吸收累积特性及生理生化指标的影响[J]. 核农学报, 2014,28(4):742 – 747.
[10]HOAGLAND D R, RNON D I.The water culture method for growing plants without soil[J].Calif Agric Exp Stn Circ,1950,347(2):32.
[11]王晶英.植物生理生化实验技术与原理[M].哈尔滨:东北林业大学出版社,2003:82-83.
[12]JIANG H M, YANG J C, ZHANG J F. Effects of external phosphorus on the cell ultrastructure and the chlorophyll content of maize under cadmium and zinc stress[J]. Environ Pollut, 2007, 147(3):750-756.
[13]DHINDSA R S, PLUMB-DHINDSA P, THORPE T A. Leaf senescence:Correlated with increased levels of membrane permeability and lipid peroxidation,and decreased levels of superoxide dismutase and catalase[J]. J Exp Bot, 1981,32 (1):93-101.
[14]BOWLER C, MONTAGU M V, INZE D. Superoxide dismutase and stress tolerance[J]. Annual Review of Plant Physiology and Plant Molecular Biology, 1992, 43: 83-116.
[15]MORAN J F, JAMES E K, RUBIO M C, et al. Functional characterization and expression of a cytosolic iron-superoxide dismutase from cowpea root nodules[J]. Plant Physiol, 2003, 133(2):773-782 .
[16]LIAU Y J, WEN L, SHAW J F, et al. A highly stable cambialistic-superoxide dismutase from Antrodia camphorata:Expression in yeast and enzyme properties[J]. J Biotechnol, 2007, 31:84-91.
[17]李品武,吴永胜,梁琪惠,等. 氟胁迫对茶树氟积累特性及其生理生化指标的影响[J].西南大学学报,2010,32(8):38-42.
[18]杜海荣,杨田甜,吕荣芳,等. 氟污染对玉米幼苗生长及生理特性的影响[J].农业环境科学学报, 2010, 29(2):216-222.
[19]唐茜,赵先明,杜晓,等.氟对茶树生长、叶片生理生化指标与茶叶品质的影响[J].植物营养与肥料学报, 2011,17(1):186-194.〖ZK)〗〖FL)〗

相似文献/References:

[1]陈春林,田易萍,陈林波,等.基于荧光标记的紫娟茶树转录组EST-SSR标记开发[J].江苏农业学报,2018,(04):747.[doi:doi:10.3969/j.issn.1000-4440.2018.04.005]
 CHEN Chun-lin,TIAN Yi-ping,CHEN Lin-bo,et al.EST-SSR marker development of Zijuan tea tree transcriptome based on the fluorescent labeling[J].,2018,(05):747.[doi:doi:10.3969/j.issn.1000-4440.2018.04.005]
[2]胡振民,万青,李欢,等.茶树CsNRT1.1基因密码子使用特性分析[J].江苏农业学报,2019,(04):896.[doi:doi:10.3969/j.issn.1000-4440.2019.04.021]
 HU Zhen min,WAN Qing,LI Huan,et al.Analysis of codon usage features of CsNRT1.1 gene in Camellia sinensis[J].,2019,(05):896.[doi:doi:10.3969/j.issn.1000-4440.2019.04.021]
[3]王治会,岳翠男,李琛,等.江西省茶树种质化学特性多样性分析与鉴定评价[J].江苏农业学报,2020,(01):172.[doi:doi:10.3969/j.issn.1000-4440.2020.01.024]
 WANG Zhi-hui,YUE Cui-nan,LI Chen,et al.Diversity analysis and evaluation of chemical characteristics of tea germplasms in Jiangxi province[J].,2020,(05):172.[doi:doi:10.3969/j.issn.1000-4440.2020.01.024]
[4]赵洋,刘振,杨培迪,等.黄金茶种质资源生化成分的多样性分析[J].江苏农业学报,2021,(05):1285.[doi:doi:10.3969/j.issn.1000-4440.2021.05.025]
 ZHAO Yang,LIU Zhen,YANG Pei-di,et al.Diversity analysis of biochemical components in Huangjincha (Camellia sinensis) germplasm resources[J].,2021,(05):1285.[doi:doi:10.3969/j.issn.1000-4440.2021.05.025]
[5]邰玉玲,杨林,王欢欢,等.茶特征成分合成相关新转录因子鉴定[J].江苏农业学报,2021,(06):1534.[doi:doi:10.3969/j.issn.1000-4440.2021.05.023]
 TAI Yu-ling,YANG Lin,WANG Huan-huan,et al.Identification of new transcription factors related to the synthesis of characteristic components in tea[J].,2021,(05):1534.[doi:doi:10.3969/j.issn.1000-4440.2021.05.023]
[6]黄双杰,曹梦珍,陈凌芝,等.氮素胁迫条件下茶树根系发育及生长素的响应[J].江苏农业学报,2023,(03):814.[doi:doi:10.3969/j.issn.1000-4440.2023.03.023]
 HUANG Shuang-jie,CAO Meng-zhen,CHEN Ling-zhi,et al.Auxin response and tea plant roots formation regulated by nitrogen stress[J].,2023,(05):814.[doi:doi:10.3969/j.issn.1000-4440.2023.03.023]
[7]刘悦,曲浩,田易萍,等.转录组测序分析外源水杨酸诱导茶树热激蛋白基因的响应[J].江苏农业学报,2024,(04):607.[doi:doi:10.3969/j.issn.1000-4440.2024.04.004]
 LIU Yue,QU Hao,TIAN Yi-ping,et al.Transcriptome analysis of the response of heat shock protein encoding genes induced by salicylic acid in tea plants[J].,2024,(05):607.[doi:doi:10.3969/j.issn.1000-4440.2024.04.004]
[8]刘财国,吕水源,于文涛,等.北苑贡茶茶树种质遗传多样性及其与青心乌龙茶树的亲缘关系[J].江苏农业学报,2024,(05):935.[doi:doi:10.3969/j.issn.1000-4440.2024.05.018]
 LIU Caiguo,LYU Shuiyuan,YU Wentao,et al.Genetic diversity of Beiyuan tribute tea germplasms and their genetic relationship with Qingxinwulong[J].,2024,(05):935.[doi:doi:10.3969/j.issn.1000-4440.2024.05.018]
[9]李春雷.氟对茶树抗坏血酸?谷胱甘肽循环系统的影响[J].江苏农业学报,2016,(05):1018.[doi:10.3969/j.issn.1000-4440.2016.05.010]
 LI Chun-lei.ASA-GSH cycle in tea plant exposed to fluoride application[J].,2016,(05):1018.[doi:10.3969/j.issn.1000-4440.2016.05.010]

备注/Memo

备注/Memo:
收稿日期:2015-01-22 基金项目:国家自然科学基金项目(31400585);潍坊市科技发展计划项目(201301151) 作者简介:李春雷(1979-),男,博士,副教授,主要从事茶树栽培生理与生化方面的研究。(E-mail)ligreentea@aliyun.com 通讯作者:倪德江,(E-mail)nidj2009@gmail.com
更新日期/Last Update: 2015-10-31