[1]李春雷.氟对茶树抗坏血酸?谷胱甘肽循环系统的影响[J].江苏农业学报,2016,(05):1018-1022.[doi:10.3969/j.issn.1000-4440.2016.05.010]
 LI Chun-lei.ASA-GSH cycle in tea plant exposed to fluoride application[J].,2016,(05):1018-1022.[doi:10.3969/j.issn.1000-4440.2016.05.010]
点击复制

氟对茶树抗坏血酸?谷胱甘肽循环系统的影响()
分享到:

江苏农业学报[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2016年05期
页码:
1018-1022
栏目:
遗传育种·生理生化
出版日期:
2016-11-22

文章信息/Info

Title:
ASA-GSH cycle in tea plant exposed to fluoride application
作者:
李春雷12
1.潍坊科技学院贾思勰农学院,山东寿光262700;2. 华中农业大学园艺林学学院,湖北武汉430070
Author(s):
LI Chun-lei12
1. Jiasixie College of Agronomy, Weifang University of Science & Technology, Shouguang 262700, China;2. College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan 430070, China
关键词:
茶树活性氧抗坏血酸-谷胱甘肽循环
Keywords:
Camellia sinensis (L.)fluoride reactive oxygen species (ROS)ascorbate-glutathione cycle
分类号:
S571.101
DOI:
10.3969/j.issn.1000-4440.2016.05.010
文献标志码:
A
摘要:
以一年生福鼎大白扦插苗为材料,采用水培法,研究不同浓度氟对茶树抗坏血酸-谷胱甘肽(ASA-GSH)循环中酶及抗氧化物质的影响。结果表明:随着氟处理浓度的增加,抗坏血酸过氧化物酶(APX) 、谷胱甘肽还原酶(GR)、单脱氢抗坏血酸还原酶(MDHAR)活性均先升后降;总抗坏血酸(T-ASA)、还原型抗坏血酸(ASA)、脱氢抗坏血酸(DHA)含量显著增加;脱氢抗坏血酸还原酶(DHAR)活性、总谷胱甘肽(T-GSH)含量、还原型谷胱甘肽(GSH)含量均呈下降趋势;ASA/DHA和GSH/GSSG均显著下降;丙二醛(MDA)、过氧化氢(H2O2)含量显著增加。说明,在低氟范围内,ASA-GSH循环对氟胁迫做出了抵御响应,及时清除活性氧(ROS),保护茶树免受伤害,但随着氟浓度的增加,ROS产生量超出了这些酶及抗氧化物质的清除能力,导致过量的ROS积累。
Abstract:
One-year-old seedlings of Camellia sinensis (L.) O. Kuntze cv. Fudingdabai were grown hydroponically in order to study the effects of fluoride (F) on the activities of relative oxidative enzymes and antioxidation substances in the ascorbate glutathione (ASA-GSH) cycle in tea plant. With increasing F concentrations, ascorbate peroxidase (APX), glutathione reductase (GR) and monodehydroascorbate reductase (MDHAR) activities increased first and decreased afterwards, ascorbate (ASA) and dehydroascorbate (DHA) contents increased significantly, dehydroascorbate reductase (DHAR) activity,total ascorbate (T-GSH) and glutathione (GSH) as well as ASA/DHA and GSH/GSSG declined, and malondialdehyde (MDA) and hydrogen peroxide (H2O2) contents increased significantly. In conclusion, at low F concentrations, ASA-GSH cycle could scavenge reactive oxygen species (ROS) to protect cells from free radical injury. However, ROS was accumculated due to incapability of scavenging of ASA-GSH cycle in response to high F concentration.

参考文献/References:

[1]陈瑞鸿,梁月荣,陆建良,等.茶树对氟富集作用的研究[J].茶叶,2002,28(4):187-190.
[2]FUNG K F, ZHANG Z Q, WONG J W C, et al. Fluoride contents in tea and soil from tea plantations and the release of fluoride into tea liquor during infusion[J]. Environmental Pollution, 2011, 30(104):197-205.
[3]SOFUOGLU S C,KAVCAR P. An exposure and risk assessment for fluoride and trace metals in black tea[J]. J Hazard Mater, 2008, 158(2/3):392-400.
[4]LI C L, NI D J. Effect of fluoride on chemical constituents of tea leaves[J].Fluoride, 2009, 42(3): 237-243.
[5]LI C L, YANG X, HU J H, et al. Effect of fluoride on aroma of tea leaves[J]. Fluoride, 2013, 46(1):25-28.
[6]LI C L, ZHENG Y N, ZHOU J R, et al. Changes of leaf antioxidant system, photosynthesis and ultrastructure in tea plant under the stress of fluorine[J]. Biologia Plantarum, 2011, 55 (3): 563-566.
[7]李春雷,倪德江.氟对幼龄茶树叶绿素含量及抗氧化酶活性的影响[J].江苏农业学报,2015,31(5):1149-1153.
[8]NOCTOR G, ARISI A C M, JOUANIN L, et al. Glutathione: biosynthesis, metabolism and relationship to stress tolerance explored in transformed plants[J]. J Exp Botany, 1998,49(321): 623-647.
[9]马玉华.逆境胁迫对苹果抗坏血酸代谢相关酶活性及基因表达的影响[D].杨凌:西北农林科技大学,2008.
[10]王华华,黄俊骏,杨丽丹. 大豆幼苗中抗坏血酸和谷胱甘肽对干旱胁迫的生理响应[J]. 江苏农业科学,2014,42(5): 86-88.
[11]HOAGLAND D R, RNON D I.The water culture method for growing plants without soil[J].Calif Agric Exp Stn Circ, 1950, 347(2):32.
[12]PEREIRA G, MOLINA S, LEA P, et al. Activity of antioxidant enzymes in response to cadmium in Crotalaria juncea[J]. Plant Soil, 2002, 239:123-132.
[13]NAKANO Y, ASADA K. Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts[J]. Plant & Cell Physiology,1980, 22(5):867-880.
[14]MIYAKE C, ASADA K. Thylakoid-bound ascorbate peroxidase in spinach chloroplasts and photoreduction of its primary oxidation product monodehydroascorbate radicals in thylakoids[J]. Plant & Cell Physiology, 1992, 33(5):541-553.
[15]KAMPFENKEL K, VAN MONTAGU M, INZ D. Extraction and determination of ascorbate and dehydroascorbate from plant tissue[J]. Anal Biochem, 1995, 225(1):165-167.
[16]陈建勋,王晓峰.植物生理学实验指导[M].广州:华南理工大学出版社,2002.
[17]DHINDSA R S, PLUMB-DHINDSA P, THORPE T A. Leaf senescence:correlated with increased levels of membrane permeability and lipid peroxidation,and decreased levels of superoxide dismutase and catalase[J]. J Exp Bot, 1981,32 (1):93-101.
[18]GREEN M A, FRY S. Vitamin C degradation in plant cells via enzymatic hydrolysis of 4-O-oxalyl-L-threonate[J]. Nature, 2005, 433(7021):83-87.
[19]SHALATA A, MITTOVAV, VOLOLCITA M, et al. Response of the cultivated tomato and its wild salt-tolerant relative Lycopersicon pennellii to salt-dependent oxidative stress: the root antioxidative system[J]. Physiol Plantarum, 2001, 112(4):487-494.
[20]AMOR N B, Jiménez A, MEGDICHE W, et al. Response of antioxidant systems to NaCI stress in the halophyte Cakile maritime[J]. Physiologia Plantarunm, 2006, 126(3):446-457.
[21]李晓云,王秀峰,吕乐福,等.外源 NO 对铜胁迫下番茄幼苗根系抗坏血酸-谷胱甘肽循环的影响[J].应用生态学报,2013,24(4):1023-1030.

相似文献/References:

[1]陈春林,田易萍,陈林波,等.基于荧光标记的紫娟茶树转录组EST-SSR标记开发[J].江苏农业学报,2018,(04):747.[doi:doi:10.3969/j.issn.1000-4440.2018.04.005]
 CHEN Chun-lin,TIAN Yi-ping,CHEN Lin-bo,et al.EST-SSR marker development of Zijuan tea tree transcriptome based on the fluorescent labeling[J].,2018,(05):747.[doi:doi:10.3969/j.issn.1000-4440.2018.04.005]
[2]胡振民,万青,李欢,等.茶树CsNRT1.1基因密码子使用特性分析[J].江苏农业学报,2019,(04):896.[doi:doi:10.3969/j.issn.1000-4440.2019.04.021]
 HU Zhen min,WAN Qing,LI Huan,et al.Analysis of codon usage features of CsNRT1.1 gene in Camellia sinensis[J].,2019,(05):896.[doi:doi:10.3969/j.issn.1000-4440.2019.04.021]
[3]王治会,岳翠男,李琛,等.江西省茶树种质化学特性多样性分析与鉴定评价[J].江苏农业学报,2020,(01):172.[doi:doi:10.3969/j.issn.1000-4440.2020.01.024]
 WANG Zhi-hui,YUE Cui-nan,LI Chen,et al.Diversity analysis and evaluation of chemical characteristics of tea germplasms in Jiangxi province[J].,2020,(05):172.[doi:doi:10.3969/j.issn.1000-4440.2020.01.024]
[4]赵洋,刘振,杨培迪,等.黄金茶种质资源生化成分的多样性分析[J].江苏农业学报,2021,(05):1285.[doi:doi:10.3969/j.issn.1000-4440.2021.05.025]
 ZHAO Yang,LIU Zhen,YANG Pei-di,et al.Diversity analysis of biochemical components in Huangjincha (Camellia sinensis) germplasm resources[J].,2021,(05):1285.[doi:doi:10.3969/j.issn.1000-4440.2021.05.025]
[5]邰玉玲,杨林,王欢欢,等.茶特征成分合成相关新转录因子鉴定[J].江苏农业学报,2021,(06):1534.[doi:doi:10.3969/j.issn.1000-4440.2021.05.023]
 TAI Yu-ling,YANG Lin,WANG Huan-huan,et al.Identification of new transcription factors related to the synthesis of characteristic components in tea[J].,2021,(05):1534.[doi:doi:10.3969/j.issn.1000-4440.2021.05.023]
[6]黄双杰,曹梦珍,陈凌芝,等.氮素胁迫条件下茶树根系发育及生长素的响应[J].江苏农业学报,2023,(03):814.[doi:doi:10.3969/j.issn.1000-4440.2023.03.023]
 HUANG Shuang-jie,CAO Meng-zhen,CHEN Ling-zhi,et al.Auxin response and tea plant roots formation regulated by nitrogen stress[J].,2023,(05):814.[doi:doi:10.3969/j.issn.1000-4440.2023.03.023]
[7]李春雷,倪德江.氟对幼龄茶树叶绿素含量及抗氧化酶活性的影响[J].江苏农业学报,2015,(05):1149.[doi:doi:10.3969/j.issn.1000-4440.2015.05.032]
 LI Chun-lei,NI De-jiang.Chlorophyll content and antioxidation of young tea plant exposed to fluoride[J].,2015,(05):1149.[doi:doi:10.3969/j.issn.1000-4440.2015.05.032]

备注/Memo

备注/Memo:
收稿日期:2016-03-31 基金项目:国家自然科学基金项目(31400585);潍坊市科技发展计划项目(2013YD181) 作者简介:李春雷(1979-),男,山东潍坊人,博士,副教授,主要从事茶树栽培生理与生化方面的研究。(E-mail)ligreentea@aliyun.com
更新日期/Last Update: 2016-11-22