[1]徐玉伟,印敬明,白潇,等.马铃薯 StPYL1 和 StPYL8 基因的分子克隆与表达分析[J].江苏农业学报,2015,(01):23-31.[doi:10.3969/j.issn.1000-4440.2015.01.004]
 XU Yu-wei,YIN Jing-ming,BAI Xiao,et al.Molecular cloning and expression analysis of potato StPYL1 and StPYL8 genes[J].,2015,(01):23-31.[doi:10.3969/j.issn.1000-4440.2015.01.004]
点击复制

马铃薯 StPYL1 和 StPYL8 基因的分子克隆与表达分析()
分享到:

江苏农业学报[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2015年01期
页码:
23-31
栏目:
遗传育种·耕作栽培·生理生化
出版日期:
2015-02-28

文章信息/Info

Title:
Molecular cloning and expression analysis of potato StPYL1 and StPYL8 genes
作者:
徐玉伟印敬明白潇史珂杨清
(南京农业大学生命科学学院, 江苏南京210095)
Author(s):
XU Yu-weiYIN Jing-mingBAI XiaoSHI KeYANG Qing
(College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China)
关键词:
马铃薯StPYL1StPYL8克隆表达
Keywords:
potatoStPYL1StPYL8cloningexpression
分类号:
S532.03
DOI:
10.3969/j.issn.1000-4440.2015.01.004
文献标志码:
A
摘要:
PYL(Pyrabactin resistance like)是最新发现的一种ABA受体蛋白,在ABA信号转导过程中起着重要的作用。本研究采用RT-PCR方法从马铃薯品种Désirée中克隆StPYL1和StPYL8 cDNA序列(GenBank登录号:KJ660844、KJ660845)。StPYL1 cDNA开放阅读框长度为696 bp,编码一个由231个氨基酸残基组成的蛋白;StPYL8 cDNA开放阅读框长度为561 bp,编码一个由186个氨基酸残基组成的蛋白。结构分析显示:StPYL1蛋白含有3个α螺旋、3个β折叠;StPYL8蛋白含有2个α螺旋、4个β折叠;二者均含有START-like结构域;蛋白三级结构比较显示,StPYL1与拟南芥AtPYL1相似,StPYL8与拟南芥AtPYL9相似。系统进化树分析发现,StPYL1与苜蓿MtPYR1、StPYL8与拟南芥AtPYL8亲缘关系较近。组织表达分析结果表明,StPYL1和StPYL8在茎叶中均有表达,StPYL1在茎中表达最高,StPYL8在叶中表达强于茎。StPYL1和StPYL8在马铃薯块茎中都有所表达,但整个块茎发育阶段StPYL8表达量高于StPYL1。外源ABA处理诱导StPYL1和StPYL8上调表达,盐和干旱胁迫对StPYL8表达的影响大于对StPYL1的影响。
Abstract:
PYL(Pyrabaction resistance like) identified in recent research is a novel abscisic acid receptor and plays important roles in ABA responses. Two ABA receptor genes, designated as StPYL1 and StPYL8, were isolated from potato Désirée (Solanum tuberosum) by RT-PCR (GenBank accession numbers:KJ660844 and KJ660845). The ORF of StPYL1 is 696 bp long and encodes a putative protein of 231 amino acids. The ORF of StPYL8 is 561 bp long and encodes a putative protein of 186 amino acids. Protein secondary structure prediction analysis shows that protein StPYL1 has 3 α-helices and 3 β-strands and StPYL8 is composed of 2 α-helices and 4 β-strands. They all have a START-like domain. The 3D structure comparison indicated that StPYL1 and StPYL8 shared high similarities with AtPYL1 and AtPYL9, respectively. Evolutionary analysis revealed that StPYL1 had the nearest genetic relationship with MtPYR1 and StPYL8 had the nearest genetic relationship with AtPYL8. Analysis of mRNA level exhibited that StPYL1 and StPYL8 were expressed in the stem and leaves. StPYL1 was expressed more in stem and StPYL8 higher in leaves. The expression level of StPYL8 was greater during the whole tuberization than StPYL1. Both StPYL1 and StPYL8 genes were upregulated by exogenous ABA treatment. StPYL8 gene was upregulated under salinity and drought stresses, however StPYL1 was less affected.

参考文献/References:

[1]CUTLER S R, RODRIGUEZ P L, FINKELSTEIN R R, et al. Abscisic acid: emergence of a core signaling network[J]. Annu Rev Plant Biol,2010,61:651-679.
[2]王少先,彭克勤,萧浪涛,等. 逆境下ABA 的积累及其触发机制[J]. 植物生理学通讯,2003,39(5):413-417.
[3]吴耀荣,谢旗. ABA与植物胁迫抗性[J]. 植物学通报,2006,23(5):511-518.
[4]ADIE BAT, PEREZ-PEREZ J, PEREZ-PEREZ M M, et al. ABA is an essential signal for plant resistance to pathogens affecting JA biosynthesis and the activation of defenses in Arabidopsis[J]. Plant Cell, 2007,19(5):1665-1681.
[5]DING Z H,LI S M,AN X L, et al. Transgenic expression of MYB15 confers enhanced sensitivity to abscisic acid and improved drought tolerance in Arabidopsis thaliana[J]. J Genet Genomics, 2009,36(1):17-29.
[6]张大鹏. 始于质体/叶绿体的ABA信号通路[J]. 植物学报,2011,46(4): 361-369.
[7]SHEN Y Y, WANG X F, WU F Q, et al. The Mg-chelatase H subunit is an abscisic acid receptor[J]. Nature, 2006, 443(7113):823-826.
[8]WU F Q, XIN Q, CAO Z, et al. The magnesium-chelatase H subunit binds abscisic acid and functions in abscisic acid signaling: new evidence in Arabidopsis[J]. Plant Physiol, 2009,150(4):1940-1954.
[9]SHANG Y, YAN L, LIU Z Q, et al. The Mg-chelatase H subunit of Arabidopsis antagonizes a group of WRKY transcription repressors to relieve ABA-responsive genes of inhibition[J]. Plant Cell, 2010,22(6):1909-1935.
[10]ANTONI R, RODRIGUEZ L, GONZALEZ-GUZMAN M, et al. Review News on ABA transport, protein degradation, and ABFs/WRKYs in ABA signaling[J]. Curr Opin Plant Biol, 2011,14(5):547-553.
[11]LIU X, YUE Y, LI B, et al. AG protein-coupled receptor is a plasma membrane receptor for the plant hormone abscisic acid[J]. Science,2007,315(5819):1712-1716.
[12]PANDEY S, NELSON D C, ASSMANN S M. Two novel GPCR-type G proteins are abscisic acid receptors in Arabidopsis[J]. Cell, 2009,136(1):136-148.
[13]MA Y, SZOSTKIEWICZ I,KORTE A, et al. Regulators of PP2C phosphatase activity function as abscisic acid sensors[J]. Science, 2009,324(5930):1064-1068.
[14]PARK S Y, FUNG P, NISHIMURA N, et al. Abscisic acid inhibits type 2C protein phosphatases via the PYR/PYL family of START proteins[J]. Science, 2009,324(5930): 1068-1071.
[15]SUN L, WANG Y P, CHEN P, et al. Transcriptional regulation of SlPYL, SlPP2C, and SlSnRK2 gene families encoding ABA signal core components during tomato fruit development and drought stress[J]. J Exp Bot,2011,62(15):5659-5669.
[16]YOSHIDA R, UMEZAWA T, MIZOGUCHI T, et al. The regulatory domain of SRK2E/OST1/SnRK2.6 interacts with ABI1 and integrates abscisic acid (ABA) and osmotic stress signals controlling stomatal closure in Arabidopsis[J]. J Biol Chem, 2006,281(8):5310-5318.
[17]FUJII H, CHINNUSAMY V, RODRIGUES A, et al. In vitro reconstitution of an abscisic acid signaling pathway[J]. Nature, 2009,462(7273):660-664.
[18]MELCHER K, NG LM, ZhOU X E, et al. A gate–latch–lock mechanism for hormone signalling by abscisic acid receptors[J]. Nature, 2009,462(7273):602-608.
[19]KOBAYASHI Y, MYRATA M, MINAMI H, et al. Abscisic acid-activated SNRK2 protein kinases function in the gene-regulation pathway of ABA signal transduction by phosphorylating ABA response elementbinding factors[J]. Plant J, 2005,44(6):939-949.
[20]FURIHATA T, MARUYAMA K, FUJITA Y, et al. Abscisic aciddependent multisite phosphorylation regulates the activity of a transcription activator AREB1[J]. Proc Natl Acad Sci, 2006,103(6):1988-1993.
[21]SZOSTKIEWICZ I, RICHTER K, KEPKA M, et al. Closely relatedreceptor complexes differ in their ABA selectivity and sensitivity[J]. Plant J, 2010, 61(1): 25-35.
[22]ZHANG X, JIANG L, WANG G, et al. Structural insights into the abscisic acid stereospecificity by the ABA receptors PYR/PYL/RCAR[J]. PLoS One, 2013,8(7):1-10.
[23]胡帅,王芳展,刘振宁,等. PYR/PYL/RCAR 蛋白介导植物ABA的信号转导[J]. 遗传,2012,34(5):560-572.
[24]GONZALEZ-GUZMAN M, PIZZIO G A, ANTONI R, et al. Arabidopsis PYR/PYL/RCAR receptors play a major role in quantitative regulation of stomatal aperture and transcriptional response to abscisic acid[J]. Plant Cell, 2012,24(6):2483-2496.
[25]ENDO A, SAWADA Y, TAKAHASHI H, et al.Drought induction of Arabidopsis 9-cis-epoxycarotenoid dioxygenase occurs in vascular parenchyma cells[J]. Plant Physiol, 2008,147(4):1984-1993. 
[26]KILIAN J, WHITEHEAD D, HORAK J, et al. The AtGenExpress global stress expression data set: protocols, evaluation and model data analysis of UV-B light, drought and cold stress responses[J]. Plant J,2007,50(2):347-363.
[27]NG L M, MELCHER K, TEH B T, et al.Abscisic acid perception and signaling: structural mechanisms and applications[J].Acta Pharmacol Sin, 2014,35(5):567-584.
[28]SAAVEDRA X, MODREGO A, RODRIGUEZ D, et al. The nuclear interactor PYL8/RCAR3 of Fagus sylvatica FsPP2C1 is a positive regulator of abscisic acid signaling in seeds and stress[J]. Plant Physiol,2010,152(1):133-150.
[29]LENG P, YUAN B, GUO Y, et al.The role of abscisic acid in fruit ripening and responses to abiotic stress[J]. J Exp Bot,2014,65(6):4577-4588.
[30]SANTIAGO J, RODRIGUES A, SAEZ A, et al. Modulation of drought resistance by the abscisic acid receptor PYL5 through inhibition of clade A PP2Cs[J]. Plant J,2009, 60(4):575-588.

相似文献/References:

[1]何虎翼,谭冠宁,何新民,等.63 份马铃薯品种(系)资源农艺性状的主成分与聚类分析[J].江苏农业学报,2017,(01):27.[doi:10.3969/j.issn.1000-4440.2017.01.005 ]
 HE Hu-yi,TAN Guan-ning,HE Xin-min,et al.Principal component and cluster analysis for agronomic traits of 63 potato varieties or clones[J].,2017,(01):27.[doi:10.3969/j.issn.1000-4440.2017.01.005 ]
[2]亢艳莉,申双和,张学艺,等.气候变化对宁夏南部山区马铃薯产量的影响及马铃薯水分供需特征分析[J].江苏农业学报,2017,(05):1056.[doi:doi:10.3969/j.issn.1000-4440.2017.05.015]
 KANG Yan-li,SHEN Shuang-he,ZHANG Xue-yi,et al.Effect of climate change on potato yield of Ningxia southern mountainous area and analysis of characteristics of water supply and demand in potato[J].,2017,(01):1056.[doi:doi:10.3969/j.issn.1000-4440.2017.05.015]
[3]王卓卓,何英彬,罗善军,等.基于冠层高光谱数据与马氏距离的马铃薯品种识别[J].江苏农业学报,2018,(05):1036.[doi:doi:10.3969/j.issn.1000-4440.2018.05.010]
 WANG Zhuo-zhuo,HE Ying-bin,LUO Shan-jun,et al.Variety identification of potatoes based on canopy hyperspectral data and Mahalanobis distance[J].,2018,(01):1036.[doi:doi:10.3969/j.issn.1000-4440.2018.05.010]
[4]许伟栋,赵忠盖.基于卷积神经网络和支持向量机算法的马铃薯表面缺陷检测[J].江苏农业学报,2018,(06):1378.[doi:doi:10.3969/j.issn.1000-4440.2018.06.025]
 XU Wei-dong,ZHAO Zhong-gai.Potato surface defects detection based on convolution neural networks and support vector machine algorithm[J].,2018,(01):1378.[doi:doi:10.3969/j.issn.1000-4440.2018.06.025]
[5]黄强,郑顺林,郭函,等.氮增效剂对马铃薯叶片及土壤氮的影响[J].江苏农业学报,2019,(05):1087.[doi:doi:10.3969/j.issn.1000-4440.2019.05.013]
 HUANG Qiang,ZHENG Shun-lin,GUO Han,et al.Effects of nitrogen synergist on nitrogen in potato leaves and soil[J].,2019,(01):1087.[doi:doi:10.3969/j.issn.1000-4440.2019.05.013]
[6]许建民,颜志明,史培华,等.不同光谱及其组合对马铃薯干物质积累和分配的影响[J].江苏农业学报,2020,(01):32.[doi:doi:10.3969/j.issn.1000-4440.2020.01.005]
 XU Jian-min,YAN Zhi-ming,SHI Pei-hua,et al.Effects of different spectra and their combinations on dry matter accumulation and distribution in potato[J].,2020,(01):32.[doi:doi:10.3969/j.issn.1000-4440.2020.01.005]
[7]许建民,刘艳,颜志明,等.不同光谱对马铃薯种薯品质的影响[J].江苏农业学报,2020,(05):1105.[doi:doi:10.3969/j.issn.1000-4440.2020.05.005]
 XU Jian-min,LIU Yan,YAN Zhi-ming,et al.Effects of different spectra on quality of seed potato[J].,2020,(01):1105.[doi:doi:10.3969/j.issn.1000-4440.2020.05.005]
[8]杨茜,刘吉利,贺锦红,等.栽培模式对宁南地区马铃薯生理特性及产量的影响[J].江苏农业学报,2021,(03):555.[doi:doi:10.3969/j.issn.1000-4440.2021.03.002]
 YANG Qian,LIU Ji-li,HE Jin-hong,et al.Effects of cultivation pattern on physiological characteristics and yield of potatoes planted in southern Ningxia[J].,2021,(01):555.[doi:doi:10.3969/j.issn.1000-4440.2021.03.002]
[9]肖熙鸥,林文秋,陈卓,等.马铃薯抗青枯病育种研究进展[J].江苏农业学报,2021,(05):1344.[doi:doi:10.3969/j.issn.1000-4440.2021.05.033]
 XIAO Xi-ou,LIN Wen-qiu,CHEN Zhuo,et al.Research advances in potato breeding for bacterial wilt resistance[J].,2021,(01):1344.[doi:doi:10.3969/j.issn.1000-4440.2021.05.033]
[10]安珍,张茹艳,周春涛,等.铁肥对马铃薯生理特性、产量及品质的影响[J].江苏农业学报,2022,38(04):931.[doi:doi:10.3969/j.issn.1000-4440.2022.04.009]
 AN Zhen,ZHANG Ru-yan,ZHOU Chun-tao,et al.Effects of iron fertilizer on physiological characteristics, yield and quality of potato[J].,2022,38(01):931.[doi:doi:10.3969/j.issn.1000-4440.2022.04.009]

备注/Memo

备注/Memo:
收稿日期:2014-04-16 作者简介:徐玉伟(1986-),男,河南信阳人,硕士研究生,主要从事马铃薯块茎发育调控研究。(Tel)18512526695;(E-mail)xuyuwei_cn@sina.com 通讯作者:杨清,(E-mail)qyang19@njau.edu.cn
更新日期/Last Update: 2015-02-28