[1]刘计涛,王梦诗,索海翠,等.马铃薯GA2ox家族基因响应赤霉素(GA)和低温胁迫表达分析[J].江苏农业学报,2023,(05):1110-1119.[doi:doi:10.3969/j.issn.1000-4440.2023.05.003]
 LIU Ji-tao,WANG Meng-shi,SUO Hai-cui,et al.Expression analysis of GA2ox family genes in response to gibberellin (GA) and cold stress in potato[J].,2023,(05):1110-1119.[doi:doi:10.3969/j.issn.1000-4440.2023.05.003]
点击复制

马铃薯GA2ox家族基因响应赤霉素(GA)和低温胁迫表达分析()
分享到:

江苏农业学报[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2023年05期
页码:
1110-1119
栏目:
遗传育种·生理生化
出版日期:
2023-08-31

文章信息/Info

Title:
Expression analysis of GA2ox family genes in response to gibberellin (GA) and cold stress in potato
作者:
刘计涛王梦诗索海翠王丽单建伟李成晨安康李小波
(广东省农业科学院作物研究所/广东省农作物遗传改良重点实验室,广东广州510640)
Author(s):
LIU Ji-taoWANG Meng-shiSUO Hai-cuiWANG LiSHAN Jian-weiLI Cheng-chenAN KangLI Xiao-bo
(Crops Research Institute, Guangdong Academy of Agricultural Sciences/ Key Laboratory of Crops Genetics and Improvement of Guangdong Province, Guangzhou 510640, China)
关键词:
马铃薯GA2ox基因生物信息学分析赤霉素(GA)低温胁迫
Keywords:
potatoGA2ox genebioinformatic analysisgibberellin (GA)cold stress
分类号:
S532
DOI:
doi:10.3969/j.issn.1000-4440.2023.05.003
文献标志码:
A
摘要:
本研究基于结构域筛选马铃薯(Solanum tuberosum)基因组,获得13个StGA2ox基因家族成员。生物信息学分析结果显示,StGA2ox家族基因分为C19和C20 2个家族,其中C19又分为2个亚族,13个StGA2ox基因不均匀得分布于8条染色体上,其中有5对共线性基因对,7号染色体上有3个基因形成1个串联重复基因簇。此外,StGA2ox启动子区域存在响应低温胁迫、植物激素等多种顺式作用元件。利用实时荧光定量PCR方法分析外源GA3和低温胁迫处理条件下StGA2ox表达模式,所有StGA2ox基因均能够被外源GA3诱导表达,其中StGA2ox2、StGA2ox4、StGA2ox8、StGA2ox9和StGA2ox10受低温胁迫诱导表达显著上调,暗示着这5个基因在调节马铃薯低温胁迫耐性中发挥重要功能,可以作为进一步开展马铃薯耐低温研究的候选基因。
Abstract:
In this study, 13 StGA2ox family members were obtained by domain screening of the potato genome. Bioinformatics analysis showed that StGA2ox family genes were divided into two families, C19 and C20, and C19 was divided into two subfamilies. The 13 StGA2ox genes which were unevenly distributed on eight chromosomes, including five pairs of collinear gene pairs. And three genes on chromosome 7 formed a tandem repeat gene cluster. In addition, there were several cis-acting elements in the promoter region of StGA2ox in response to cold stress, phytohormones and so on. Real-time PCR was used to analyze the expression pattern of StGA2ox in potato under exogenous GA3 and cold stress treatment. All StGA2ox genes could be induced by exogenous GA3. Among them, StGA2ox2, StGA2ox4, StGA2ox8, StGA2ox9 and StGA2ox10 were significantly up regulated by cold stress, suggesting that these five genes played an important role in regulating the cold stress tolerance of potato and could be used as candidate genes for further research on cold stress tolerance of potato.

参考文献/References:

[1]谢从华,柳俊.中国马铃薯从济荒作物到主粮之变迁[J].华中农业大学学报,2021,40(4):8-15.
[2]EREMINA M, ROZHON W, POPPENBERGER B. Hormonal control of cold stress responses in plants[J]. Cellular and Molecular Life Sciences, 2015, 73(4), 1-14.
[3]ZHU J. Abiotic stress signaling and responses in plants[J]. Cell, 2016, 167(2):313-324.
[4]ZAHRA S, NASER K, MUHAMMAD A F, et al. Plant Life Under Changing Environment[M]. Pittsburgh: Academic Press, 2020:397-466.
[5]BAND L R, NELISSEN H, PRESTON S P, et al. Modeling reveals posttranscriptional regulation of GA metabolism enzymes in response to drought and cold[J]. PNAS, 2022,119(31):e2121288119.
[6]DEGEFU M Y, TESEMA M. Review of gibberellin signaling[J]. International Journal of Engineering Applied Sciences and Technology, 2020, 4(9):377-390.
[7]GRIFFITHS J, MURASE K, RIEU I, et al. Genetic characterization and functional analysis of the GID1 gibberellin receptors in Arabidopsis[J]. Plant Cell, 2006, 18(12):3399-3414.
[8]MARTINEZ-BELLO L, MORITZ T, LOPEZ-DIAZ I. Silencing C19-GA 2-oxidases induces parthenocarpic development and inhibits lateral branching in tomato plants[J]. Journal of Experimental Botany, 2015, 66(19):5897-5910.
[9]HEDDEN P. The Current status of research on gibberellin biosynthesis[J]. Plant Cell Physiology, 2020, 61(11):1832-1849.
[10]PIMENTA-LANGE M J, SZPERLINSKI M, KALIX L, et al. Cucumber gibberellin 1-oxidase/desaturase initiates novel gibberellin catabolic pathways[J]. Journal of Biological Chemistry, 2020, 295:8442-8448.
[11]ACHARD P, GONG F, CHEMINANT S, et al. The cold-inducible CBF1 factor-dependent signaling pathway modulates the accumulation of the growth-repressing DELLA proteins via its effect on gibberellin metabolism[J]. Plant Cell, 2008, 20(8):2117-2129.
[12]RICHTER R, BASTAKIS E, SCHWECHHEIMER C. Cross-repressive interactions between SOC1 and the GATAs GNC and GNL/CGA1 in the control of greening, cold tolerance, and flowering time in Arabidopsis[J]. Plant Physiology, 2013, 162(4):1992-2004.
[13]HSIEH T H, LEE J T, YANG P T, et al. Heterology expression of the Arabidopsis C-repeat/dehydration response element binding factor 1 gene confers elevated tolerance to chilling and oxidative stresses in transgenic tomato[J]. Plant Physiology, 2002, 129(3):1086-1094.
[14]SHAN D, HUANG J, YANG Y, et al. Cotton GhDREB1 increases plant tolerance to low temperature and is negatively regulated by gibberellic acid[J]. New Phytologist, 2007, 176(1):70-81.
[15]ZHOU M Q, XU M, WU L H, et al. CbCBF from Capsella bursa-pastoris enhances cold tolerance and restrains growth in Nicotiana tabacum by antagonizing with gibberellin and affecting cell cycle signaling[J]. Plant Molecular Biology, 2014, 85:259-275.
[16]YAMAGUCHI S. Gibberellin metabolism and its regulation[J]. Annual Review of Plant Biology, 2008, 59:225-251.
[17]COLEBROOK E H, THOMAS S G, PHILLIPS A L, et al. The role of gibberellin signalling in plant responses to abiotic stress[J]. Journal of Experimental Botany, 2014, 217(1):67-75.
[18]LANGE M J P, LANGE T. Touch-induced changes in Arabidopsis morphology dependent on gibberellin breakdown[J]. Nature Plants, 2015, 1(3):14025.
[19]HEDDEN P, THOMAS S G. Gibberellin biosynthesis and its regulation[J]. Biochemical Journal, 2012, 444(1):11-25.
[20]LI K Q, XU X Y, HUANG X S. Identifcation of diferentially expressed genes related to dehydration resistance in a highly drought-tolerant pear, Pyrus betulaefolia, as through RNASeq[J]. PLoS One, 2016, 11(2):e0149352.
[21]LI Q, LEI S, DU K, et al. RNA-seq based transcriptomic analysis uncovers α-linolenic acid and jasmonic acid biosynthesis pathways respond to cold acclimation in Camellia japonica[J]. Scientific Reports, 2016, 6:36463.
[22]LO S F, HO T D, LIU Y L, et al. Ectopic expression of specific GA2 oxidase mutants promotes yield and stress tolerance in rice[J]. Plant Biotechnology Journal, 2017, 15(7):850-864.
[23]SHAN C, MEI Z, DUAN J, et al. OsGA2ox5, a gibberellin metabolism enzyme, is involved in plant growth, the root gravity response and salt stress[J]. PLoS One, 2014, 9(1):e87110.
[24]HSIEH K T, CHEN Y T, HU T J, et al. Comparisons within the rice GA2-oxidase gene family revealed three dominant paralogs and a functional attenuated gene that led to the identification of four amino acid variants associated with GA deactivation capability[J]. Rice, 2021, 14(1):70.
[25]LO S F, YANG S Y, CHEN K T, et al. A novel class of gibberellin 2-oxidases control semidwarfism, tillering, and root development in rice[J]. Plant Cell, 2008, 20(10):2603-2618.
[26]PEARCE S, HUTTLY A K, PROSSER I M, et al. Heterologous expression and transcript analysis of gibberellin biosynthetic genes of grasses reveals novel functionality in the GA3ox family[J]. BMC Plant Biology, 2015, 15(1):130.
[27]KIM G B, SON S U, YU H J, et al. MtGA2ox10 encoding C20-GA2-oxidase regulates rhizobial infection and nodule development in Medicago truncatula[J]. Scientific Reports, 2019, 9(1):5952.
[28]THEO L, PIMENTA L. The multifunctional dioxygenases of gibberellin synthesis[J]. Plant Cell Physiol, 2020, 61(11):1869-1879.
[29]赵亮,狄佳春,陈旭升. 棉花基因组中赤霉素氧化酶基因的鉴定与分析[J]. 江苏农业学报, 2020, 36(3): 553-560.
[30]SCHOMBURG F M, BIZZELL C M, LEE D J, et al. Overexpression of a novel class of gibberellin 2-oxidases decreasesgibberellin levels and creates dwarf plants[J]. Plant Cell, 2003, 15(1):151-163.
[31]LEE D J, ZEEVAART J A. Molecular cloning of GA 2-oxidase3 from spinach and its ectopic expression in Nicotiana sylvestris[J]. Plant Physiology, 2005, 138(1):243-254.
[32]HUANG Y, WANG X, GE S, et al. Divergence and adaptive evolution of the gibberellin oxidase genes in plants[J]. BMC Ecology and Evolution, 2015, 15(1):207.
[33]DUARTE J M, CUI L, WALL P K, et al. Expression pattern shifts following duplication indicative of subfunctionalization and neofunctionalization in regulatory genes of Arabidopsis[J]. Molecular biology and evolution, 2006, 23(2):469-478.
[34]QIAN W, LIAO B Y, CHANG A Y, et al. Maintenance of duplicate genes and their functional redundancy by reduced expression[J]. Trends in Genetics, 2010, 26(10):425-430.
[35]ZHANG J. Genetic redundancies and their evolutionary maintenance[J]. Advances In Experimental Medicine And Biology, 2012, 751:279-300.
[36]ILLOUZ-ELIAZ N, RAMON U, SHOHAT H, et al. Multiple gibberellin receptors contribute to phenotypic stability under changing environments[J]. Plant Cell, 2019, 31(7):1506-1519.
[37]HE H,LIANG G,LU S, et al. Genome-wide identification and expression analysis of GA2ox, GA3ox, and GA20ox are related to gibberellin oxidase genes in grape (Vitis vinifera L.)[J]. Genes, 2019, 10(9):680.
[38]LI C, ZHENG L, WANG X, et al. Comprehensive expression analysis of Arabidopsis GA2-oxidase genes and their functional insights[J]. Plant Science, 2019, 285:1-13.
[39]CHENG J, MA J, ZHENG X, et al. Functional analysis of the gibberellin 2-oxidase gene family in peach[J]. Frontiers in Plant Science, 2021, 12:619158.
[40]LI Y, SHAN X, JIANG Z, et al. Genome-wide identification and expression analysis of the GA2ox gene family in maize (Zea mays L.) under various abiotic stress conditions[J]. Plant Physiology and Biochemistry, 2021, 166: 621-633.
[41]ZHANG C H, NIE X, KONG W L, et al. Genome-wide identification and evolution analysis of the gibberellin oxidase gene family in six gramineae c rops[J]. Genes, 2022,13(5):863.
[42]安珍,张茹艳,周春涛,等. 铁肥对马铃薯生理特性、产量及品质的影响[J].江苏农业学报,2022,38(4):931-938.
[43]张中宁,张晨霞,吴莘玲,等. 种植密度对马铃薯产量和淀粉品质的影响[J].江苏农业科学,2022,50(7):59-66.
[44]肖熙鸥,林文秋,陈卓,等. 马铃薯抗青枯病育种研究进展[J].江苏农业学报,2021,37(5):1344-1351.
[45]翟鑫娜,张云帅,刘毅强, 等. 马铃薯耐低氮材料的筛选[J].江苏农业科学,2022,50(6):82-87.
[46]陈哲,王祥和,周文静,等. 荔枝GA2ox基因家族的鉴定及表达分析[J].分子植物育种, 2021, 19(14):4626-4636.
[47]马李广,张贺龙,庞小可,等. 白菜bZIP转录因子基因家族应答春化反应关键基因表达分析[J]. 江苏农业学报, 2022, 38(3):765-774.
[48]WANG Y, CUI Y, HU G, et al. Reduced bioactive gibberellin content in rice seeds under low temperature leads to decreased sugar consumption and low seed germination rates[J]. Plant Physiology and Biochemistry, 2018, 133:1-10.
[49]CHENG Z, LUAN Y, MENG J, et al. WRKY transcription factor response to high-temperature stress[J]. Plants, 2021, 10(10):2211.

相似文献/References:

[1]何虎翼,谭冠宁,何新民,等.63 份马铃薯品种(系)资源农艺性状的主成分与聚类分析[J].江苏农业学报,2017,(01):27.[doi:10.3969/j.issn.1000-4440.2017.01.005 ]
 HE Hu-yi,TAN Guan-ning,HE Xin-min,et al.Principal component and cluster analysis for agronomic traits of 63 potato varieties or clones[J].,2017,(05):27.[doi:10.3969/j.issn.1000-4440.2017.01.005 ]
[2]徐玉伟,印敬明,白潇,等.马铃薯 StPYL1 和 StPYL8 基因的分子克隆与表达分析[J].江苏农业学报,2015,(01):23.[doi:10.3969/j.issn.1000-4440.2015.01.004]
 XU Yu-wei,YIN Jing-ming,BAI Xiao,et al.Molecular cloning and expression analysis of potato StPYL1 and StPYL8 genes[J].,2015,(05):23.[doi:10.3969/j.issn.1000-4440.2015.01.004]
[3]亢艳莉,申双和,张学艺,等.气候变化对宁夏南部山区马铃薯产量的影响及马铃薯水分供需特征分析[J].江苏农业学报,2017,(05):1056.[doi:doi:10.3969/j.issn.1000-4440.2017.05.015]
 KANG Yan-li,SHEN Shuang-he,ZHANG Xue-yi,et al.Effect of climate change on potato yield of Ningxia southern mountainous area and analysis of characteristics of water supply and demand in potato[J].,2017,(05):1056.[doi:doi:10.3969/j.issn.1000-4440.2017.05.015]
[4]王卓卓,何英彬,罗善军,等.基于冠层高光谱数据与马氏距离的马铃薯品种识别[J].江苏农业学报,2018,(05):1036.[doi:doi:10.3969/j.issn.1000-4440.2018.05.010]
 WANG Zhuo-zhuo,HE Ying-bin,LUO Shan-jun,et al.Variety identification of potatoes based on canopy hyperspectral data and Mahalanobis distance[J].,2018,(05):1036.[doi:doi:10.3969/j.issn.1000-4440.2018.05.010]
[5]许伟栋,赵忠盖.基于卷积神经网络和支持向量机算法的马铃薯表面缺陷检测[J].江苏农业学报,2018,(06):1378.[doi:doi:10.3969/j.issn.1000-4440.2018.06.025]
 XU Wei-dong,ZHAO Zhong-gai.Potato surface defects detection based on convolution neural networks and support vector machine algorithm[J].,2018,(05):1378.[doi:doi:10.3969/j.issn.1000-4440.2018.06.025]
[6]黄强,郑顺林,郭函,等.氮增效剂对马铃薯叶片及土壤氮的影响[J].江苏农业学报,2019,(05):1087.[doi:doi:10.3969/j.issn.1000-4440.2019.05.013]
 HUANG Qiang,ZHENG Shun-lin,GUO Han,et al.Effects of nitrogen synergist on nitrogen in potato leaves and soil[J].,2019,(05):1087.[doi:doi:10.3969/j.issn.1000-4440.2019.05.013]
[7]许建民,颜志明,史培华,等.不同光谱及其组合对马铃薯干物质积累和分配的影响[J].江苏农业学报,2020,(01):32.[doi:doi:10.3969/j.issn.1000-4440.2020.01.005]
 XU Jian-min,YAN Zhi-ming,SHI Pei-hua,et al.Effects of different spectra and their combinations on dry matter accumulation and distribution in potato[J].,2020,(05):32.[doi:doi:10.3969/j.issn.1000-4440.2020.01.005]
[8]许建民,刘艳,颜志明,等.不同光谱对马铃薯种薯品质的影响[J].江苏农业学报,2020,(05):1105.[doi:doi:10.3969/j.issn.1000-4440.2020.05.005]
 XU Jian-min,LIU Yan,YAN Zhi-ming,et al.Effects of different spectra on quality of seed potato[J].,2020,(05):1105.[doi:doi:10.3969/j.issn.1000-4440.2020.05.005]
[9]杨茜,刘吉利,贺锦红,等.栽培模式对宁南地区马铃薯生理特性及产量的影响[J].江苏农业学报,2021,(03):555.[doi:doi:10.3969/j.issn.1000-4440.2021.03.002]
 YANG Qian,LIU Ji-li,HE Jin-hong,et al.Effects of cultivation pattern on physiological characteristics and yield of potatoes planted in southern Ningxia[J].,2021,(05):555.[doi:doi:10.3969/j.issn.1000-4440.2021.03.002]
[10]肖熙鸥,林文秋,陈卓,等.马铃薯抗青枯病育种研究进展[J].江苏农业学报,2021,(05):1344.[doi:doi:10.3969/j.issn.1000-4440.2021.05.033]
 XIAO Xi-ou,LIN Wen-qiu,CHEN Zhuo,et al.Research advances in potato breeding for bacterial wilt resistance[J].,2021,(05):1344.[doi:doi:10.3969/j.issn.1000-4440.2021.05.033]

备注/Memo

备注/Memo:
收稿日期:2022-09-02 基金项目:广东省自然科学基金项目(2021A1515010778);广州市基础研究计划项目(202102020845);广东省农业科学院创新基金项目(202109);甘肃省农业科学院中青年基金项目(2020GAAS40)作者简介:刘计涛(1989-),男,河北唐山人,博士,助理研究员,主要从事马铃薯抗寒遗传育种。(E-mail) liujtpotato@126.com 通讯作者:李小波,(E-mail) Lixiaobo1981@163.com
更新日期/Last Update: 2023-09-13