[1]黄双杰,曹梦珍,陈凌芝,等.氮素胁迫条件下茶树根系发育及生长素的响应[J].江苏农业学报,2023,(03):814-821.[doi:doi:10.3969/j.issn.1000-4440.2023.03.023]
 HUANG Shuang-jie,CAO Meng-zhen,CHEN Ling-zhi,et al.Auxin response and tea plant roots formation regulated by nitrogen stress[J].,2023,(03):814-821.[doi:doi:10.3969/j.issn.1000-4440.2023.03.023]
点击复制

氮素胁迫条件下茶树根系发育及生长素的响应()
分享到:

江苏农业学报[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2023年03期
页码:
814-821
栏目:
园艺
出版日期:
2023-06-30

文章信息/Info

Title:
Auxin response and tea plant roots formation regulated by nitrogen stress
作者:
黄双杰1曹梦珍1陈凌芝1朱润雨1张莉1匡祯超2孙慕芳1郭桂义1
(1.信阳农林学院茶学院/河南省豫南茶树资源综合开发重点实验室/河南省茶叶加工与检测工程技术研究中心,河南信阳464000;2.河南赛山悟道生态茶业科技有限公司,河南信阳464000)
Author(s):
HUANG Shuang-jie1CAO Meng-zhen1CHEN Ling-zhi1ZHU Run-yu1 ZHANG Li1KUANG Zhen-chao2SUN Mu-fang1GUO Gui-yi1
(1.College of Tea Science, Xinyang Agriculture and Forestry University/Henan Provincial Key Laboratory of Tea Plant Comprehensive Utilization in South Henan/Henan Provincial Engineering Technology Research Center of Tea Processing and Testing, Xinyang 464000, China;2.Henan Saishan Wudao Ecological Tea Industry Technology Co., Ltd., Xinyang 464000, China)
关键词:
茶树氮浓度根系生长素
Keywords:
Camellia sinensisnitrogen concentrationrootauxin
分类号:
S571.1
DOI:
doi:10.3969/j.issn.1000-4440.2023.03.023
文献标志码:
A
摘要:
以茶树中茶108为材料,利用营养液水培试验研究3个氮浓度(0 mmol/L, 0.2 mmol/L, 2.5 mmol/L)条件下茶树的生长表型、生物量、全氮含量、根系发育、生长素类吲哚-3-乙酸(IAA)浓度及相关基因的表达。结果表明,与正常供氮(2.5 mmol/L)相比,低氮(0.2 mmol/L)胁迫条件下茶苗根系干物质量增加,根和叶片全氮含量显著降低,平均不定根伸长,侧根密度显著降低,根、根茎结合处和叶片IAA含量显著增加;缺氮(0 mmol/L)胁迫条件下茶苗叶片和根系干物质量减少,根、茎和叶的全氮含量显著减少,侧根密度显著降低,根、根茎结合处和叶片IAA含量显著增加。qRT-PCR结果表明,低氮(0.2 mmol/L)胁迫条件下茶苗叶片生长素合成基因CsTSB、CsCYP83B1、CsNIT2和根系生长素运输基因CsLAX1、CsPILS3相对表达量显著上调,缺氮(0 mmol/L)胁迫条件下茶苗叶片生长素合成基因CsCYP83B1、CsNIT2和根系生长素运输基因CsLAX1、CsPILS3相对表达量显著上调。由此推测,低氮和缺氮胁迫下叶片生长素合成以及向根系极性运输增加是茶苗根系对氮素胁迫响应的生理机制之一。
Abstract:
The growth phenotype, biomass, total nitrogen contents, root development, concentration of indole-3-acetic acid (IAA) and auxin related genes expression were studied by hydroponic experiment of Camellia sinensis cv. Zhongcha 108, using nutrient solution containing 0 mmol/L, 0.2 mmol/L, 2.5 mmol/L nitrogen, respectively. The results showed that, compared with the C. sinensis cv. Zhongcha 108 seedlings under normal nitrogen concentration (2.5 mmol/L) treatment, when treated under low nitrogen concentration (0.2 mmol/L) stress, the dry matter weight of root system increased, the total nitrogen contents in leaves and roots reduced significantly, the average adventitious root length elongated, the density of lateral roots reduced significantly, the IAA contents in root-shoot junction and roots increased significantly. Compared with the C. sinensis cv. Zhongcha 108 seedlings under normal nitrogen concentration, under the condition of nitrogen deficiency (0 mmol/L) stress, the dry matter weight of leaves and root system of C. sinensis cv. Zhongcha 108 reduced, the total nitrogen content in the leaves, stems and roots reduced significantly, the density of lateral roots reduced significantly, the IAA contents in leaves, root-shoot junction and roots increased significantly. Results of qRT-PCR showed that, relative expression of leaf auxin synthesis related genes CsTSB, CsCYP83B1, CsNIT2 and auxin transport related genes CsLAX1, CsPILS3 in roots of C. sinensis cv. Zhongcha 108 seedlings under low nitrogen concentration (0.2 mmol/L) stress were upregulated significantly in comparison with the seedlings under normal nitrogen treatment. Under nitrogen deficiency (0 mmol/L) stress condition, relative expression of leaf auxin synthesis related genes CsCYP83B1, CsNIT2 in leaves of C. sinensis cv. Zhongcha 108 seedlings and auxin transport related genes CsLAX1, CsPILS3 in roots of C. sinensis cv. Zhongcha 108 seedlings were upregulated significantly in comparison with the seedlings under normal nitrogen treatment. It can be concluded that the increasing of synthesis and polar transport of leaf auxin from leaves down to roots in C. sinensis cv. Zhongcha 108 seedlings under nitrogen deficiency stress and low nitrogen stress is one of the physiological mechanisms of the response of seedling roots to nitrogen stresses.

参考文献/References:

[1]TANG S, LIU Y, ZHENG N, et al. Temporal variation in nutrient requirements of tea (Camellia sinensis) in China based on QUEFTS analysis[J]. Scientific Reports, 2020, 10(1): 1745.
[2]马立锋,陈红金,单英杰,等. 浙江省绿茶主产区茶园施肥现状及建议[J]. 茶叶科学, 2013, 33(1): 74-84.
[3]康启兵. 茶树氮素营养及其生理生态学效应[C]. 重庆:中国茶叶学会, 2009.
[4]林郑和,钟秋生,陈常颂,等. 缺氮条件下不同品种茶树叶片光合特性的变化[J]. 茶叶科学, 2013, 33(6): 500-504.
[5]李海琳,王丽鸳,成浩,等. 氮素水平对茶树重要农艺性状和化学成分含量的影响[J]. 茶叶科学, 2017, 37(4): 383-391.
[6]胡国策,蒋家月,田坤红,等. 氮素形态和水平对茶树生理特性的影响[J]. 安徽农业大学学报, 2018, 45(4): 588-593.
[7]刘健伟,方寒寒,袁新跃,等. 氮素对茶树生理及品质成分影响的研究进展[J]. 茶叶学报, 2018, 59(3): 155-161.
[8]向芬,李维,刘红艳,等. 氮素水平对不同品种茶树光合及叶绿素荧光特性的影响[J]. 西北植物学报, 2018, 38(6): 1138-1145.
[9]林郑和,钟秋生,游小妹,等. 低氮对茶树生长及叶片抗氧化酶活性的影响[J]. 茶叶学报, 2019, 60(2): 57-63.
[10]林郑和,陈常颂,钟秋生,等. 低氮对不同茶树品种生物学特性的影响[J]. 茶叶学报, 2021, 62(4): 164-169.
[11]CHEN Y, WANG F, WU Z, et al. Effects of long-term nitrogen fertilization on the formation of metabolites related to tea quality in subtropical China[J]. Metabolites, 2021, 11(3): 146.
[12]LIN Z H, CHEN C S, ZHONG Q S, et al. The GC-TOF/MS-based Metabolomic analysis reveals altered metabolic profiles in nitrogen-deficient leaves and roots of tea plants (Camellia sinensis)[J]. BMC Plant Biology, 2021, 21(1): 506.
[13]LYNCH J. Root architecture and plant productivity[J].Plant Physiology, 1995, 109(1): 7-13.
[14]王新超,杨亚军,陈亮,等. 茶树氮素利用效率相关生理生化指标初探[J]. 作物学报, 2005, 31(7): 926-931.
[15]SUN X, CHEN F, YUAN L, et al. The physiological mechanism underlying root elongation in response to nitrogen deficiency in crop plants[J]. Planta, 2020, 251(4): 84.
[16]JIA Z T, VON WIRN N. Signaling pathways underlying nitrogen-dependent changes in root system architecture: from model to crop species[J]. Journal of Experimental Botany, 2020, 71(15): 4393-4404.
[17]LPEZ-BUCIO J, CRUZ-RAMREZ A, HERRERA-ESTRELLA L. The role of nutrient availability in regulating root architecture[J]. Current Opinion Plant Biology, 2003, 6(3): 280-287.
[18]OLATUNJI D, GEELEN D, VERSTRAETEN I. Control of endogenous auxin levels in plant root development[J]. International Journal of Molecular Sciences, 2017, 18(12): 2587.
[19]HU Q Q, SHU J Q, LI W M, et al. Role of auxin and nitrate signaling in the development of root system architecture[J]. Frontiers in Plant Science, 2021, 12: 690363.
[20]王瑜. 茶树叶片中生长素合成和信号转导的分子机制研究[D]. 南京: 南京农业大学, 2020: 5.
[21]LUO L, ZHANG Y, XU G. How does nitrogen shape plant architecture?[J]. Journal of Experimental Botany, 2020, 71(15): 4415-4427.
[22]SUN X, CHEN H, WANG P, et al. Low nitrogen induces root elongation via auxin-induced acid growth and auxin-regulated target of rapamycin (TOR) pathway in maize[J]. Journal of Plant Physiology, 2020, 254: 153281.
[23]DEVI L L, PANDEY A, GUPTA S, et al. The interplay of auxin and brassinosteroid signaling tunes root growth under low and different nitrogen forms[J]. Plant Physiology, 2022, 189(3): 1757-1773.
[24]付宇凡,张中伟,袁澍. 生长素在氮素调控根系发育中的作用机理研究[C]. 昆明:云南省科学技术协会, 2018: 476.
[25]孙虎威,王文亮,刘尚俊,等. 低氮胁迫下水稻根系的发生及生长素的响应[J]. 土壤学报, 2014, 51(5): 1096-1102.
[26]王立志,魏跃伟,黄明月,等. 低氮胁迫对烟草生物学性状、生长素及NtPINs 基因家族的影响[J]. 中国烟草学报, 2018, 24(1): 38-44.
[27]吴伯千,梁月荣,潘根生. 水培和土培茶树的显微及超微结构比较[J]. 浙江农业大学学报, 1992, 18(4): 21-24.
[28]王学奎. 植物生理生化实验原理和技术[M]. 2版. 北京: 高等教育出版社, 2006: 134.
[29]LIU W H, CHEN F F, WANG C E, et al. Indole-3-acetic acid in burkholderia pyrrocinia JK-SH007: enzymatic identification of the indole-3-acetamide synthesis pathway[J]. Fronters in Microbiology, 2019,10: 2559.
[30]CUI D J, YIN Y, LI H D, et al. Comparative transcriptome analysis of atmospheric pressure cold plasma enhanced early seedling growth in Arabidopsis thaliana[J]. Plasma Science and Technology, 2021, 23(8): 085502.
[31]WANG A, GUO J, WANG S, et al. BoPEP4, a C-terminally encoded plant elicitor peptide from broccoli, plays a role in salinity stress tolerance[J]. International Journal of Molecular Sciences, 2022, 23(6): 3090.
[32]MA W, LI J, QU B, et al. Auxin biosynthetic gene TAR2 is involved in low nitrogen-mediated reprogramming of root architecture in Arabidopsis[J]. Plant Journal, 2014, 78(1): 70-79.
[33]SHAO A, MA W, ZHAO X, et al. The auxin biosynthetic TRYPTOPHAN AMINOTRANSFERASE RELATED TaTAR2.1-3A increases grain yield of wheat[J]. Plant Physiology, 2017, 174(4): 2274-2288.
[34]GAO K, CHEN F, YUAN L, et al. A comprehensive analysis of root morphological changes and nitrogen allocation in maize in response to low nitrogen stress[J]. Plant Cell and Environment, 2015, 38(4): 740-750.
[35]GRUBER B D, GIEHL R F, FRIEDEL S, et al. Plasticity of the Arabidopsis root system under nutrient deficiencies[J]. Plant Physiology, 2013, 163(1): 161-179.
[36]GIEHL R F, VON WIRN N. Root nutrient foraging[J]. Plant Physiology, 2014, 166(2): 509-517.
[37]王浩,安宁,陈燕,等. IAA和脱萼剂处理对库尔勒香梨果实发育过程质地及相关酶活性的影响[J].江苏农业科学,2022,50(17):149-156.
[38]尚磊,高倩,李悦,等.蜂糖李果实内源激素含量与其生理落果的关系[J].南方农业学报,2022,53(11):3184-3191.
[39]张瀚,杨福孙,胡文斌,等. 火龙果生长发育过程中内源激素含量变化[J].江苏农业科学,2022,50(10):110-116.
[40]张吉玲,李明阳,李勇,等. 机械损伤处理杉木无性系萌蘖及内源激素含量差异[J].南京林业大学学报(自然科学版),2021,45(2):153-158.
[41]TIAN Q, CHEN F, LIU J, et al. Inhibition of maize root growth by high nitrate supply is correlated with reduced IAA levels in roots[J]. Journal of Plant Physiology, 2008, 165(9): 942-951.

相似文献/References:

[1]李春雷.氟对茶树抗坏血酸?谷胱甘肽循环系统的影响[J].江苏农业学报,2016,(05):1018.[doi:10.3969/j.issn.1000-4440.2016.05.010]
 LI Chun-lei.ASA-GSH cycle in tea plant exposed to fluoride application[J].,2016,(03):1018.[doi:10.3969/j.issn.1000-4440.2016.05.010]
[2]李春雷,倪德江.氟对幼龄茶树叶绿素含量及抗氧化酶活性的影响[J].江苏农业学报,2015,(05):1149.[doi:doi:10.3969/j.issn.1000-4440.2015.05.032]
 LI Chun-lei,NI De-jiang.Chlorophyll content and antioxidation of young tea plant exposed to fluoride[J].,2015,(03):1149.[doi:doi:10.3969/j.issn.1000-4440.2015.05.032]
[3]陈春林,田易萍,陈林波,等.基于荧光标记的紫娟茶树转录组EST-SSR标记开发[J].江苏农业学报,2018,(04):747.[doi:doi:10.3969/j.issn.1000-4440.2018.04.005]
 CHEN Chun-lin,TIAN Yi-ping,CHEN Lin-bo,et al.EST-SSR marker development of Zijuan tea tree transcriptome based on the fluorescent labeling[J].,2018,(03):747.[doi:doi:10.3969/j.issn.1000-4440.2018.04.005]
[4]胡振民,万青,李欢,等.茶树CsNRT1.1基因密码子使用特性分析[J].江苏农业学报,2019,(04):896.[doi:doi:10.3969/j.issn.1000-4440.2019.04.021]
 HU Zhen min,WAN Qing,LI Huan,et al.Analysis of codon usage features of CsNRT1.1 gene in Camellia sinensis[J].,2019,(03):896.[doi:doi:10.3969/j.issn.1000-4440.2019.04.021]
[5]王治会,岳翠男,李琛,等.江西省茶树种质化学特性多样性分析与鉴定评价[J].江苏农业学报,2020,(01):172.[doi:doi:10.3969/j.issn.1000-4440.2020.01.024]
 WANG Zhi-hui,YUE Cui-nan,LI Chen,et al.Diversity analysis and evaluation of chemical characteristics of tea germplasms in Jiangxi province[J].,2020,(03):172.[doi:doi:10.3969/j.issn.1000-4440.2020.01.024]
[6]赵洋,刘振,杨培迪,等.黄金茶种质资源生化成分的多样性分析[J].江苏农业学报,2021,(05):1285.[doi:doi:10.3969/j.issn.1000-4440.2021.05.025]
 ZHAO Yang,LIU Zhen,YANG Pei-di,et al.Diversity analysis of biochemical components in Huangjincha (Camellia sinensis) germplasm resources[J].,2021,(03):1285.[doi:doi:10.3969/j.issn.1000-4440.2021.05.025]
[7]邰玉玲,杨林,王欢欢,等.茶特征成分合成相关新转录因子鉴定[J].江苏农业学报,2021,(06):1534.[doi:doi:10.3969/j.issn.1000-4440.2021.05.023]
 TAI Yu-ling,YANG Lin,WANG Huan-huan,et al.Identification of new transcription factors related to the synthesis of characteristic components in tea[J].,2021,(03):1534.[doi:doi:10.3969/j.issn.1000-4440.2021.05.023]

备注/Memo

备注/Memo:
收稿日期:2022-08-29 基金项目:国家重点研发计划项目(2021YFD1601103);河南省自然科学基金项目(222300420270);河南省科技攻关项目(212102110117);河南省高等学校重点科研项目(20B210018);信阳农林学院校青年基金项目(2019LG004、20200103);信阳农林学院茶学科技创新团队项目(XNKJTD-003);信阳农林学院科研促进教学专项课题项目(kj2021015)作者简介:黄双杰(1983-),女,河南驻马店人,博士,讲师,主要从事茶树营养与生理研究。(E-mail)1157737358@qq.com 通讯作者:孙慕芳,(E-mail)310513267@qq.com
更新日期/Last Update: 2023-07-11