[1]曾文娟,周伟,何诗恬,等.茶树品种白毫早叶绿体基因组结构特征及其密码子偏好性分析[J].江苏农业学报,2025,(07):1398-1411.[doi:doi:10.3969/j.issn.1000-4440.2025.07.016]
 ZENG Wenjuan,ZHOU Wei,HE Shitian,et al.Structural characteristics and codon usage bias analysis of the chloroplast genome in the tea cultivar Camellia sinensis cv. Baihaozao[J].,2025,(07):1398-1411.[doi:doi:10.3969/j.issn.1000-4440.2025.07.016]
点击复制

茶树品种白毫早叶绿体基因组结构特征及其密码子偏好性分析()
分享到:

江苏农业学报[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2025年07期
页码:
1398-1411
栏目:
园艺
出版日期:
2025-07-31

文章信息/Info

Title:
Structural characteristics and codon usage bias analysis of the chloroplast genome in the tea cultivar Camellia sinensis cv. Baihaozao
作者:
曾文娟1234周伟1234何诗恬1234贺宁1234龚意辉1234陈致印1234
(1.湖南人文科技学院农业与生物技术学院,湖南娄底417000;2.湖南人文科技学院湖南省园艺生产与加工类创新创业教育中心,湖南娄底417000;3.湖南人文科技学院湖南省创新创业示范基地,湖南娄底417000;4.湖南人文科技学院湖南省湘中特色农业资源开发利用与质量安全控制重点实验室,湖南娄底417000)
Author(s):
ZENG Wenjuan1234ZHOU Wei1234HE Shitian1234HE Ning1234GONG Yihui1234CHEN Zhiyin1234
(1.College of Agriculture and Biotechnology, Hunan University of Humanities, Science and Technology, Loudi 417000, China;2.Innovation and Entrepreneurship Education Center for Horticultural Production and Processing in Hunan Province, Hunan University of Humanities, Science and Technology, Loudi 417000, China;3.Hunan University of Humanities, Science and Technology, Hunan Provincial Innovation and Entrepreneurship Demonstration Base, Loudi 417000;4.Key Laboratory of Characteristic Agricultural Resource Development and Quality Safety Control in Hunan Province, Hunan University of Humanities, Science and Technology, Loudi 417000, China)
关键词:
茶树叶绿体基因组密码子偏好性最优密码子
Keywords:
Camellia sinensischloroplast genomecodon usage biasoptimal codons
分类号:
S571.1
DOI:
doi:10.3969/j.issn.1000-4440.2025.07.016
文献标志码:
A
摘要:
本研究首次解析了茶树品种白毫早(Camellia sinensis cv. Baihaozao)的完整叶绿体基因组特征。采用Illumina高通量测序技术对白毫早的叶绿体基因组进行从头组装,并借助Geneious平台进行基因注释及微卫星标记检测。同时基于IRscope工具实现基因组结构的可视化分析。在密码子使用偏好性评估中,综合采用相对同义密码子使用度(RSCU)、有效密码子数(ENC)及中性绘图法系统解析密码子选择模式及其演化驱动力。结果表明,白毫早茶树叶绿体基因组是总长度为157 025 bp的典型四分体环状结构,含有大小为86 586 bp的大单拷贝区(LSC)、18 277 bp的小单拷贝区(SSC)及1对大小各为26 081 bp的反向重复序列(IR)区域;全基因组的G+C含量为37.30%,其中IR区域的G+C含量最高(42.95%),SSC区域的G+C含量最低(30.55%)。白毫早的叶绿体环状基因组共注释了133个功能基因,包括87个蛋白质编码基因、37个转运核糖核酸(tRNA)基因、8个核糖体核糖核酸(rRNA)基因及1个假基因,基因中内含子与外显子的分布呈现显著差异,如trnK-UUU的内含子最大,为2 488 bp,ycf2的外显子最长,为6 897 bp。此外,本研究检测到247个简单重复序列(SSR)位点,其中单核苷酸重复占比较高(占比为63.56%),且表现出明显的A/T偏好性(97.45%);本研究鉴定出40个长重复序列,包含20个正向重复序列、20个回文重复序列。密码子偏好性分析结果显示,密码子第3位碱基中G+C的平均含量(GC3值)(27.59%)显著低于密码子第1位碱基中G+C的平均含量(GC1值)(46.85%)、密码子第2位碱基中G+C的平均含量(GC2)(39.50%)。ENC的均值为44.57,表明密码子的偏好性较弱。中性回归分析结果显示,校正决定系数(R2adj)=0.016 0,自然选择是起主导作用的进化动力(贡献率为91.47%)。90%最优密码子以A/T结尾,这一特征与通过奇偶规则2(PR2)分析得出的密码子第3位的G含量(G3)>密码子第3位碱基中的C含量(C3)、密码子第3位的T含量(T3)>密码子第3位的A含量(A3)的偏好性结果一致。基于31个保守蛋白质编码基因构建系统发育树,结果显示,白毫早茶树与福鼎白毫茶树形成高支持的分支[自举值(bootstrap)=100%],属于山茶属核心类群。本研究结果为茶树遗传资源评价及叶绿体基因组进化机制的研究提供了参考。
Abstract:
This study reports the first complete chloroplast genome of the tea cultivar Camellia sinensis cv. Baihaozao. Using Illumina high-throughput sequencing, we de novo assembled the chloroplast genome and performed gene annotation and microsatellite detection in Geneious. Additionally, genome structure visualization analysis was achieved with the IRscope tool. In the assessment of codon usage bias, we comprehensively employed the relative synonymous codon usage (RSCU), the effective number of codons (ENC), and neutrality plot analysis to systematically analyze codon selection patterns and their evolutionary driving forces. The results revealed that the chloroplast genome of Camellia sinensis cv. Baihaozao exhibited a typical quadripartite circular structure with a total length of 157 025 bp, comprising a large single-copy (LSC) region of 86 586 bp, a small single-copy (SSC) region of 18 277 bp, and a pair of inverted repeat (IR) regions each 26 081 bp in length. The overall G+C content of the chloroplast genome was 37.30%, with the IR regions exhibiting the highest value (42.95%) and the SSC region showing the lowest (30.55%). The circular chloroplast genome was annotated with 133 functional genes, comprising 87 protein-coding genes, 37 transfer RNA (tRNA) genes, eight ribosomal RNA (rRNA) genes, and one pseudogene. Gene structure analysis revealed marked variation in intron and exon distribution. The largest intron (2 488 bp) was identified in trnK-UUU, while the longest exon (6 897 bp) was found in ycf2. Furthermore, 247 simple sequence repeat (SSR) loci were detected, with mononucleotide repeats constituting the majority (63.56%) and showing a pronounced A/T bias (97.45%). We identified 40 long repeat sequences, comprising 20 forward repeats and 20 palindromic repeats. Codon usage bias analysis showed that the average G+C content at the third codon position (GC3, 27.59%) was significantly lower than that at the first (GC1, 46.85%) and second (GC2, 39.50%) positions. The mean value of ENC was 44.57, indicating that the codon bias was relatively weak. The results of the neutrality regression analysis showed that the adjusted coefficient of determination (R2adj) value was 0.016 0, indicating that natural selection was the dominant evolutionary force (with a contribution rate of 91.47%). Ninety percent of optimal codons ended with A/T, consistent with the bias pattern identified by parity rule 2 (PR2) analysis: G content at the third position (G3) > C content at the third position (C3), and T content at the third position (T3) > A content at the third position (A3). Phylogenetic analysis based on 31 conserved protein-coding genes demonstrated that Camellia sinensis cv. Baihaozao formed a highly supported clade (bootstrap value = 100%) with C. sinensis cv. Fuding Baihao, belonging to the core Camellia clade. This study provides references for evaluating tea genetic resources and investigating the evolutionary mechanisms of chloroplast genomes.

参考文献/References:

[1]WANG Z J, CAI Q W, WANG Y, et al. Comparative analysis of codon bias in the chloroplast genomes of Theaceae species[J]. Frontiers in Genetics,2022,13:824610.
[2]杨雨青, 谭娟, 汪芳, 等. 茶树叶绿体基因组的研究与应用进展[J]. 生物技术通报,2024,40(2):20-30.
[3]赵洋,刘振,杨培迪,等. 密码子偏性分析方法及茶树中密码子偏性研究进展[J]. 茶叶通讯,2016,43(2):3-7.
[4]LI W, ZHANG C P, GUO X, et al. Complete chloroplast genome of Camellia japonica genome structures,comparative and phylogenetic analysis[J]. PLoS One,2019,14(5):e0216645.
[5]徐礼羿. 茶树SNP高密度遗传连锁图谱构建与数量性状候选基因挖掘[D]. 武汉:华中农业大学,2019.
[6]CHEN Z Y, LIU Q, XIAO Y, et al. Complete chloroplast genome sequence of Camellia sinensis:genome structure,adaptive evolution,and phylogenetic relationships[J]. Journal of Applied Genetics,2023,64(3):419-429.
[7]王占军,李豹,姜行舟,等. 两种茶树全基因组数据的密码子偏好性比较分析[J]. 中国细胞生物学学报,2018,40(12):2028-2039.
[8]王占军,吴子琦,王朝霞,等. 3个茶树品种WOX基因家族的进化及密码子偏好性比较[J]. 南京林业大学学报(自然科学版),2022,46(2):71-80.
[9]KATOH K, STANDLEY D M. MAFFT multiple sequence alignment software version 7:improvements in performance and usability[J]. Molecular Biology and Evolution,2013,30(4):772-780.
[10]YU Y F, OUYANG Z, GUO J, et al. Complete chloroplast genome sequence of Erigeron breviscapus and characterization of chloroplast regulatory elements[J]. Frontiers in Plant Science,2021,12:758290.
[11]SOMARATNE Y, GUAN D L, WANG W Q, et al. The complete chloroplast genomes of two Lespedeza species:insights into codon usage bias,RNA editing sites,and phylogenetic relationships in desmodieae (Fabaceae:Papilionoideae)[J]. Plants,2019,9(1):51.
[12]陆奇丰,黄至欢,骆文华. 极小种群濒危植物广西火桐、丹霞梧桐的叶绿体基因组特征[J]. 生物多样性,2021,29(5):586-595.
[13]GRUENSTAEUDL M, GERSCHLER N, BORSCH T. Bioinformatic workflows for generating complete plastid genome sequences-an example from Cabomba (Cabombaceae) in the context of the phylogenomic analysis of the water-lily clade[J]. Life,2018,8(3):25.
[14]吴东洋. 以杨柳科为例叶绿体基因组组装分析流程管理平台开发及应用[D]. 南京:南京林业大学,2020.
[15]ZHANG T W, ZHANG X W, HU S N, et al. An efficient procedure for plant organellar genome assembly,based on whole genome data from the 454 GS FLX sequencing platform[J]. Plant Methods,2011,7:38.
[16]QU X J, ZOU D, ZHANG R Y, et al. Progress,challenge and prospect of plant plastome annotation[J]. Frontiers in Plant Science,2023,14:1166140.
[17]GICHIRA A W, LI Z Z, SAINA J K, et al. The complete chloroplast genome sequence of an endemic monotypic genus Hagenia (Rosaceae):structural comparative analysis,gene content and microsatellite detection[J]. Peer J,2017,5:e2846.
[18]PARVATHY S T, UDAYASURIYAN V, BHADANA V. Codon usage bias[J]. Molecular Biology Reports,2022,49(1):539-565.
[19]CAMIOLO S, MELITO S, PORCEDDU A. New insights into the interplay between codon bias determinants in plants[J]. DNA Research,2015,22(6):461-470.
[20]QIAO Z S, LI J Q, ZHANG X L, et al, Genome-wide identification,expression analysis,and subcellular localization of DET2 gene family in Populus yunnanensis[J]. Genes,2024,15(2):148.
[21]HERSHBERG R, PETROV D A. General rules for optimal codon choice[J]. PLoS Genetics,2009,5(7):e1000556.
[22]ANGOV E. Codon usage:nature’s roadmap to expression and folding of proteins[J]. Biotechnology Journal,2011,6(6):650-659.
[23]STAMATAKIS A. RAxML version 8:a tool for phylogenetic analysis and post-analysis of large phylogenies[J]. Bioinformatics,2014,30(9):1312-1313.
[24]王兴春,杨致荣,王敏,等. 高通量测序技术及其应用[J]. 中国生物工程杂志,2012,32(1):109-114.
[25]WANG Y H, WEI Q Y, XUE T Y, et al. Comparative and phylogenetic analysis of the complete chloroplast genomes of 10 Artemisia selengensis resources based on high-throughput sequencing[J]. BMC Genomics,2024,25(1):561.
[26]SONG W C, CHEN Z M, SHI W B, et al. Comparative analysis of complete chloroplast genomes of nine species of Litsea (Lauraceae):hypervariable regions,positive selection,and phylogenetic relationships[J]. Genes,2022,13(9):1550.
[27]CHI X F, ZHANG F Q, DONG Q, et al. Insights into comparative genomics,codon usage bias,and phylogenetic relationship of species from Biebersteiniaceae and Nitrariaceae based on complete chloroplast genomes[J]. Plants,2020,9(11):1605.
[28]CHEN Q Y, CHEN C L, WANG B, et al. Complete chloroplast genomes of 11 Sabia samples:genomic features,comparative analysis,and phylogenetic relationship[J]. Frontiers in Plant Science,2022,13:1052920.
[29]FENG Z, ZHENG Y, JIANG Y, et al. Phylogenetic relationships,selective pressure and molecular markers development of six species in subfamily Polygonoideae based on complete chloroplast genomes[J]. Scientific Reports,2024,14(1):9783.
[30]KIM B, KIM J, PARK H, et al. The complete chloroplast genome sequence of Bienertia sinuspersici[J]. Mitochondrial DNA Part B,Resources,2016,1(1):388-389.
[31]CHEN M M, ZHANG M, LIANG Z S, et al. Characterization and comparative analysis of chloroplast genomes in five Uncaria species endemic to China[J]. International Journal of Molecular Sciences,2022,23(19):11617.
[32]JIN G Z, LI W J, SONG F, et al. Comparative analysis of complete Artemisia subgenus Seriphidium (Asteraceae:anthemideae) chloroplast genomes:insights into structural divergence and phylogenetic relationships[J]. BMC Plant Biology,2023,23(1):136.
[33]YAN X K, LIU T J, YUAN X, et al. Chloroplast genomes and comparative analyses among thirteen taxa within Myrsinaceae s.str.clade (Myrsinoideae,Primulaceae)[J]. International Journal of Molecular Sciences,2019,20(18):4534.
[34]ZHAO W, GUO L R, YANG Y, et al. Complete chloroplast genome sequences of Phlomis fruticosa and Phlomoides strigosa and comparative analysis of the genus Phlomis sensu lato (Lamiaceae)[J]. Frontiers in Plant Science,2022,13:1022273.
[35]KAILA T, CHADUVLA P K, RAWAL H C, et al. Chloroplast genome sequence of clusterbean (Cyamopsis tetragonoloba L.):genome structure and comparative analysis[J]. Genes,2017,8(9):212.
[36]SHI H W, YANG M, MO C M, et al. Complete chloroplast genomes of two Siraitia Merrill species:comparative analysis,positive selection and novel molecular marker development[J]. PLoS One,2019,14(12):e0226865.
[37]RAUBESON L A, PEERY R, CHUMLEY T W, et al. Comparative chloroplast genomics:analyses including new sequences from the angiosperms Nuphar advena and Ranunculus macranthus[J]. BMC Genomics,2007,8:174.
[38]SOUZA U J B, NUNES R, TARGUETA C P, et al. The complete chloroplast genome of Stryphnodendron adstringens (Leguminosae - Caesalpinioideae):comparative analysis with related Mimosoid species[J]. Scientific Reports,2019,9(1):14206.
[39]JIANG H H, WASEEM M, WANG Y, et al. Development of simple sequence repeat markers for sugarcane from data mining of expressed sequence tags[J]. Frontiers in Plant Science,2023,14:1199210.
[40]ASAF S, WAQAS M, KHAN A L, et al. The complete chloroplast genome of wild rice (Oryza minuta) and its comparison to related species[J]. Frontiers in Plant Science,2017,8:304.
[41]ASAF S, KHAN A L, KHAN A, et al. Unraveling the chloroplast genomes of two Prosopis species to identify its genomic information,comparative analyses and phylogenetic relationship[J]. International Journal of Molecular Sciences,2020,21(9):3280.
[42]CHEN S Y, ZHANG H, WANG X, et al. Analysis of codon usage bias in the chloroplast genome of Helianthus annuus J-01[J]. IOP Conference Series:Earth and Environmental Science,2021,792(1):012009.
[43]CAI Z Q, PENAFLOR C, KUEHL J V, et al. Complete plastid genome sequences of Drimys,Liriodendron,and Piper:implications for the phylogenetic relationships of magnoliids[J]. BMC Evolutionary Biology,2006,6:77.
[44]WANG X S, WANG Y Q, LI S H, et al. Analysis of codon usage bias in the Platycarya chloroplast genome[J]. Tree Genetics and Molecular Breeding,2021,11(1):1-11.
[45]YANG X, LUO X N, CAI X P. Analysis of codon usage pattern in Taenia saginata based on a transcriptome dataset[J]. Parasites & Vectors,2014,7:527.
[46]WANG R, LAN Z, LUO Y J, et al. The complete chloroplast genome of Stachys geobombycis and comparative analysis with related Stachys species[J]. Scientific Reports,2024,14:8523.
[47]CHEN J, MA W Q, HU X W, et al. Synonymous codon usage bias in the chloroplast genomes of 13 oil-tea Camellia samples from South China[J]. Forests,2023,14(4):794.
[48]赵月梅,徐其碧,杨贵清,等. 艾纳香叶绿体基因组密码子使用偏性分析[J]. 西部林业科学,2023,52(3):55-62,77.
[49]XU C, CAI X N, CHEN Q Z, et al. Factors affecting synonymous codon usage bias in chloroplast genome of Oncidium Gower Ramsey[J]. Evolutionary Bioinformatics Online,2011,7:271-278.
[50]杨洪升,谢平,李丽丽,等. 杠板归叶绿体基因组密码子偏好性分析[J/OL]. 分子植物育种
[2025-03-05]. https://link.cnki.net/urlid/46.1068.S.20230314.1714.026.
[51]XU P R, ZHANG L J, LU L P, et al. Patterns in genome-wide codon usage bias in representative species of lycophytes and ferns[J]. Genes,2024,15(7):887.
[52]FU Y, LIANG F S, LI C J, et al. Codon usage bias analysis in macronuclear genomes of ciliated protozoa[J]. Microorganisms,2023,11(7):1833.
[53]晁岳恩,吴政卿,杨会民,等. 11种植物psbA基因的密码子偏好性及聚类分析 [J]. 核农学报,2011,25(5):927-932.
[54]PING J, ZHONG X N, WANG T, et al. Structural characterization of Trivalvaria costata chloroplast genome and molecular evolution of rps12 gene in magnoliids[J]. Forests,2023,14:1101.
[55]MORTON B R, SO B G. Codon usage in plastid genes is correlated with context,position within the gene,and amino acid content[J]. Journal of Molecular Evolution,2000,50(2):184-193.
[56]GAO M Q, HUO X W, LU L T, et al. Analysis of codon usage patterns in Bupleurum falcatum chloroplast genome[J]. Chinese Herbal Medicines,2023,15(2):284-290.
[57]YANG J B, YANG S X, LI H T, et al. Comparative chloroplast genomes of Camellia species[J]. PLoS One,2013,8(8):e73053.
[58]HAO B Q, XIA Y Y, ZHANG Z Y, et al. Comparative analysis of the complete chloroplast genome sequences of four Camellia species[J]. Brazilian Journal of Botany,2024,47(1):93-103.
[59]LIN P, YIN H F, WANG K L, et al. Comparative genomic analysis uncovers the chloroplast genome variation and phylogenetic relationships of Camellia species[J]. Biomolecules,2022,12(10):1474.
[60]YE X M, HU D N, GUO Y P, et al. Complete chloroplast genome of Castanopsis sclerophylla (lindl.) schott:genome structure and comparative and phylogenetic analysis[J]. PLoS One,2019,14(7):e0212325.
[61]WU Z H, LIAO R, YANG T G, et al. Analysis of six chloroplast genomes provides insight into the evolution of Chrysosplenium (Saxifragaceae)[J]. BMC Genomics,2020,21(1):621.
[62]张文娟. 基于密码子水平的生物信息学分析及进化研究[D].上海:复旦大学,2006.
[63]胡振民,万青,李欢,等. 茶树CsNRT1.1基因密码子使用特性分析[J]. 江苏农业学报,2019,35(4):896-903.
[64]赵振宁,孙浩田,宋雨茹,等. 山楂属植物叶绿体基因组特征与密码子偏好性分析 [J]. 江苏农业学报,2023,39(2):504-517.

相似文献/References:

[1]李春雷.氟对茶树抗坏血酸?谷胱甘肽循环系统的影响[J].江苏农业学报,2016,(05):1018.[doi:10.3969/j.issn.1000-4440.2016.05.010]
 LI Chun-lei.ASA-GSH cycle in tea plant exposed to fluoride application[J].,2016,(07):1018.[doi:10.3969/j.issn.1000-4440.2016.05.010]
[2]李春雷,倪德江.氟对幼龄茶树叶绿素含量及抗氧化酶活性的影响[J].江苏农业学报,2015,(05):1149.[doi:doi:10.3969/j.issn.1000-4440.2015.05.032]
 LI Chun-lei,NI De-jiang.Chlorophyll content and antioxidation of young tea plant exposed to fluoride[J].,2015,(07):1149.[doi:doi:10.3969/j.issn.1000-4440.2015.05.032]
[3]陈春林,田易萍,陈林波,等.基于荧光标记的紫娟茶树转录组EST-SSR标记开发[J].江苏农业学报,2018,(04):747.[doi:doi:10.3969/j.issn.1000-4440.2018.04.005]
 CHEN Chun-lin,TIAN Yi-ping,CHEN Lin-bo,et al.EST-SSR marker development of Zijuan tea tree transcriptome based on the fluorescent labeling[J].,2018,(07):747.[doi:doi:10.3969/j.issn.1000-4440.2018.04.005]
[4]胡振民,万青,李欢,等.茶树CsNRT1.1基因密码子使用特性分析[J].江苏农业学报,2019,(04):896.[doi:doi:10.3969/j.issn.1000-4440.2019.04.021]
 HU Zhen min,WAN Qing,LI Huan,et al.Analysis of codon usage features of CsNRT1.1 gene in Camellia sinensis[J].,2019,(07):896.[doi:doi:10.3969/j.issn.1000-4440.2019.04.021]
[5]王治会,岳翠男,李琛,等.江西省茶树种质化学特性多样性分析与鉴定评价[J].江苏农业学报,2020,(01):172.[doi:doi:10.3969/j.issn.1000-4440.2020.01.024]
 WANG Zhi-hui,YUE Cui-nan,LI Chen,et al.Diversity analysis and evaluation of chemical characteristics of tea germplasms in Jiangxi province[J].,2020,(07):172.[doi:doi:10.3969/j.issn.1000-4440.2020.01.024]
[6]赵洋,刘振,杨培迪,等.黄金茶种质资源生化成分的多样性分析[J].江苏农业学报,2021,(05):1285.[doi:doi:10.3969/j.issn.1000-4440.2021.05.025]
 ZHAO Yang,LIU Zhen,YANG Pei-di,et al.Diversity analysis of biochemical components in Huangjincha (Camellia sinensis) germplasm resources[J].,2021,(07):1285.[doi:doi:10.3969/j.issn.1000-4440.2021.05.025]
[7]邰玉玲,杨林,王欢欢,等.茶特征成分合成相关新转录因子鉴定[J].江苏农业学报,2021,(06):1534.[doi:doi:10.3969/j.issn.1000-4440.2021.05.023]
 TAI Yu-ling,YANG Lin,WANG Huan-huan,et al.Identification of new transcription factors related to the synthesis of characteristic components in tea[J].,2021,(07):1534.[doi:doi:10.3969/j.issn.1000-4440.2021.05.023]
[8]赵振宁,孙浩田,宋雨茹,等.山楂属植物叶绿体基因组特征与密码子偏好性分析[J].江苏农业学报,2023,(02):504.[doi:doi:10.3969/j.issn.1000-4440.2023.02.024]
 ZHAO Zhen-ning,SUN Hao-tian,SONG Yu-ru,et al.Chloroplast genome characteristics and codon usage bias analysis of Crataegus L.[J].,2023,(07):504.[doi:doi:10.3969/j.issn.1000-4440.2023.02.024]
[9]黄双杰,曹梦珍,陈凌芝,等.氮素胁迫条件下茶树根系发育及生长素的响应[J].江苏农业学报,2023,(03):814.[doi:doi:10.3969/j.issn.1000-4440.2023.03.023]
 HUANG Shuang-jie,CAO Meng-zhen,CHEN Ling-zhi,et al.Auxin response and tea plant roots formation regulated by nitrogen stress[J].,2023,(07):814.[doi:doi:10.3969/j.issn.1000-4440.2023.03.023]
[10]包国媛,李文辛,杨鑫光,等.海甜菜线粒体和叶绿体基因组密码子使用偏好性分析[J].江苏农业学报,2023,(09):1804.[doi:doi:10.3969/j.issn.1000-4440.2023.09.002]
 BAO Guo-yuan,LI Wen-xin,YANG Xin-guang,et al.Analysis of codon usage bias in mitochondrial and chloroplast genomes of Beta vulgaris subsp.[J].,2023,(07):1804.[doi:doi:10.3969/j.issn.1000-4440.2023.09.002]

备注/Memo

备注/Memo:
收稿日期:2025-04-28基金项目:湖南省自然科学基金项目(2023JJ50465);湖南省科技创新计划项目(2024RC8289);娄底市科技创新计划项目(2023RC3501);国家级大学生创新训练项目(S202310553022)作者简介:曾文娟(2004-),女,湖南邵阳人,本科生,主要从事茶学研究。(E-mail)2103562420@qq.com。周伟为共同第一作者。通讯作者:陈致印,(E-mail)772612626@qq.com
更新日期/Last Update: 2025-08-19