参考文献/References:
[1]WANG Z J, CAI Q W, WANG Y, et al. Comparative analysis of codon bias in the chloroplast genomes of Theaceae species[J]. Frontiers in Genetics,2022,13:824610.
[2]杨雨青, 谭娟, 汪芳, 等. 茶树叶绿体基因组的研究与应用进展[J]. 生物技术通报,2024,40(2):20-30.
[3]赵洋,刘振,杨培迪,等. 密码子偏性分析方法及茶树中密码子偏性研究进展[J]. 茶叶通讯,2016,43(2):3-7.
[4]LI W, ZHANG C P, GUO X, et al. Complete chloroplast genome of Camellia japonica genome structures,comparative and phylogenetic analysis[J]. PLoS One,2019,14(5):e0216645.
[5]徐礼羿. 茶树SNP高密度遗传连锁图谱构建与数量性状候选基因挖掘[D]. 武汉:华中农业大学,2019.
[6]CHEN Z Y, LIU Q, XIAO Y, et al. Complete chloroplast genome sequence of Camellia sinensis:genome structure,adaptive evolution,and phylogenetic relationships[J]. Journal of Applied Genetics,2023,64(3):419-429.
[7]王占军,李豹,姜行舟,等. 两种茶树全基因组数据的密码子偏好性比较分析[J]. 中国细胞生物学学报,2018,40(12):2028-2039.
[8]王占军,吴子琦,王朝霞,等. 3个茶树品种WOX基因家族的进化及密码子偏好性比较[J]. 南京林业大学学报(自然科学版),2022,46(2):71-80.
[9]KATOH K, STANDLEY D M. MAFFT multiple sequence alignment software version 7:improvements in performance and usability[J]. Molecular Biology and Evolution,2013,30(4):772-780.
[10]YU Y F, OUYANG Z, GUO J, et al. Complete chloroplast genome sequence of Erigeron breviscapus and characterization of chloroplast regulatory elements[J]. Frontiers in Plant Science,2021,12:758290.
[11]SOMARATNE Y, GUAN D L, WANG W Q, et al. The complete chloroplast genomes of two Lespedeza species:insights into codon usage bias,RNA editing sites,and phylogenetic relationships in desmodieae (Fabaceae:Papilionoideae)[J]. Plants,2019,9(1):51.
[12]陆奇丰,黄至欢,骆文华. 极小种群濒危植物广西火桐、丹霞梧桐的叶绿体基因组特征[J]. 生物多样性,2021,29(5):586-595.
[13]GRUENSTAEUDL M, GERSCHLER N, BORSCH T. Bioinformatic workflows for generating complete plastid genome sequences-an example from Cabomba (Cabombaceae) in the context of the phylogenomic analysis of the water-lily clade[J]. Life,2018,8(3):25.
[14]吴东洋. 以杨柳科为例叶绿体基因组组装分析流程管理平台开发及应用[D]. 南京:南京林业大学,2020.
[15]ZHANG T W, ZHANG X W, HU S N, et al. An efficient procedure for plant organellar genome assembly,based on whole genome data from the 454 GS FLX sequencing platform[J]. Plant Methods,2011,7:38.
[16]QU X J, ZOU D, ZHANG R Y, et al. Progress,challenge and prospect of plant plastome annotation[J]. Frontiers in Plant Science,2023,14:1166140.
[17]GICHIRA A W, LI Z Z, SAINA J K, et al. The complete chloroplast genome sequence of an endemic monotypic genus Hagenia (Rosaceae):structural comparative analysis,gene content and microsatellite detection[J]. Peer J,2017,5:e2846.
[18]PARVATHY S T, UDAYASURIYAN V, BHADANA V. Codon usage bias[J]. Molecular Biology Reports,2022,49(1):539-565.
[19]CAMIOLO S, MELITO S, PORCEDDU A. New insights into the interplay between codon bias determinants in plants[J]. DNA Research,2015,22(6):461-470.
[20]QIAO Z S, LI J Q, ZHANG X L, et al, Genome-wide identification,expression analysis,and subcellular localization of DET2 gene family in Populus yunnanensis[J]. Genes,2024,15(2):148.
[21]HERSHBERG R, PETROV D A. General rules for optimal codon choice[J]. PLoS Genetics,2009,5(7):e1000556.
[22]ANGOV E. Codon usage:nature’s roadmap to expression and folding of proteins[J]. Biotechnology Journal,2011,6(6):650-659.
[23]STAMATAKIS A. RAxML version 8:a tool for phylogenetic analysis and post-analysis of large phylogenies[J]. Bioinformatics,2014,30(9):1312-1313.
[24]王兴春,杨致荣,王敏,等. 高通量测序技术及其应用[J]. 中国生物工程杂志,2012,32(1):109-114.
[25]WANG Y H, WEI Q Y, XUE T Y, et al. Comparative and phylogenetic analysis of the complete chloroplast genomes of 10 Artemisia selengensis resources based on high-throughput sequencing[J]. BMC Genomics,2024,25(1):561.
[26]SONG W C, CHEN Z M, SHI W B, et al. Comparative analysis of complete chloroplast genomes of nine species of Litsea (Lauraceae):hypervariable regions,positive selection,and phylogenetic relationships[J]. Genes,2022,13(9):1550.
[27]CHI X F, ZHANG F Q, DONG Q, et al. Insights into comparative genomics,codon usage bias,and phylogenetic relationship of species from Biebersteiniaceae and Nitrariaceae based on complete chloroplast genomes[J]. Plants,2020,9(11):1605.
[28]CHEN Q Y, CHEN C L, WANG B, et al. Complete chloroplast genomes of 11 Sabia samples:genomic features,comparative analysis,and phylogenetic relationship[J]. Frontiers in Plant Science,2022,13:1052920.
[29]FENG Z, ZHENG Y, JIANG Y, et al. Phylogenetic relationships,selective pressure and molecular markers development of six species in subfamily Polygonoideae based on complete chloroplast genomes[J]. Scientific Reports,2024,14(1):9783.
[30]KIM B, KIM J, PARK H, et al. The complete chloroplast genome sequence of Bienertia sinuspersici[J]. Mitochondrial DNA Part B,Resources,2016,1(1):388-389.
[31]CHEN M M, ZHANG M, LIANG Z S, et al. Characterization and comparative analysis of chloroplast genomes in five Uncaria species endemic to China[J]. International Journal of Molecular Sciences,2022,23(19):11617.
[32]JIN G Z, LI W J, SONG F, et al. Comparative analysis of complete Artemisia subgenus Seriphidium (Asteraceae:anthemideae) chloroplast genomes:insights into structural divergence and phylogenetic relationships[J]. BMC Plant Biology,2023,23(1):136.
[33]YAN X K, LIU T J, YUAN X, et al. Chloroplast genomes and comparative analyses among thirteen taxa within Myrsinaceae s.str.clade (Myrsinoideae,Primulaceae)[J]. International Journal of Molecular Sciences,2019,20(18):4534.
[34]ZHAO W, GUO L R, YANG Y, et al. Complete chloroplast genome sequences of Phlomis fruticosa and Phlomoides strigosa and comparative analysis of the genus Phlomis sensu lato (Lamiaceae)[J]. Frontiers in Plant Science,2022,13:1022273.
[35]KAILA T, CHADUVLA P K, RAWAL H C, et al. Chloroplast genome sequence of clusterbean (Cyamopsis tetragonoloba L.):genome structure and comparative analysis[J]. Genes,2017,8(9):212.
[36]SHI H W, YANG M, MO C M, et al. Complete chloroplast genomes of two Siraitia Merrill species:comparative analysis,positive selection and novel molecular marker development[J]. PLoS One,2019,14(12):e0226865.
[37]RAUBESON L A, PEERY R, CHUMLEY T W, et al. Comparative chloroplast genomics:analyses including new sequences from the angiosperms Nuphar advena and Ranunculus macranthus[J]. BMC Genomics,2007,8:174.
[38]SOUZA U J B, NUNES R, TARGUETA C P, et al. The complete chloroplast genome of Stryphnodendron adstringens (Leguminosae - Caesalpinioideae):comparative analysis with related Mimosoid species[J]. Scientific Reports,2019,9(1):14206.
[39]JIANG H H, WASEEM M, WANG Y, et al. Development of simple sequence repeat markers for sugarcane from data mining of expressed sequence tags[J]. Frontiers in Plant Science,2023,14:1199210.
[40]ASAF S, WAQAS M, KHAN A L, et al. The complete chloroplast genome of wild rice (Oryza minuta) and its comparison to related species[J]. Frontiers in Plant Science,2017,8:304.
[41]ASAF S, KHAN A L, KHAN A, et al. Unraveling the chloroplast genomes of two Prosopis species to identify its genomic information,comparative analyses and phylogenetic relationship[J]. International Journal of Molecular Sciences,2020,21(9):3280.
[42]CHEN S Y, ZHANG H, WANG X, et al. Analysis of codon usage bias in the chloroplast genome of Helianthus annuus J-01[J]. IOP Conference Series:Earth and Environmental Science,2021,792(1):012009.
[43]CAI Z Q, PENAFLOR C, KUEHL J V, et al. Complete plastid genome sequences of Drimys,Liriodendron,and Piper:implications for the phylogenetic relationships of magnoliids[J]. BMC Evolutionary Biology,2006,6:77.
[44]WANG X S, WANG Y Q, LI S H, et al. Analysis of codon usage bias in the Platycarya chloroplast genome[J]. Tree Genetics and Molecular Breeding,2021,11(1):1-11.
[45]YANG X, LUO X N, CAI X P. Analysis of codon usage pattern in Taenia saginata based on a transcriptome dataset[J]. Parasites & Vectors,2014,7:527.
[46]WANG R, LAN Z, LUO Y J, et al. The complete chloroplast genome of Stachys geobombycis and comparative analysis with related Stachys species[J]. Scientific Reports,2024,14:8523.
[47]CHEN J, MA W Q, HU X W, et al. Synonymous codon usage bias in the chloroplast genomes of 13 oil-tea Camellia samples from South China[J]. Forests,2023,14(4):794.
[48]赵月梅,徐其碧,杨贵清,等. 艾纳香叶绿体基因组密码子使用偏性分析[J]. 西部林业科学,2023,52(3):55-62,77.
[49]XU C, CAI X N, CHEN Q Z, et al. Factors affecting synonymous codon usage bias in chloroplast genome of Oncidium Gower Ramsey[J]. Evolutionary Bioinformatics Online,2011,7:271-278.
[50]杨洪升,谢平,李丽丽,等. 杠板归叶绿体基因组密码子偏好性分析[J/OL]. 分子植物育种
[2025-03-05]. https://link.cnki.net/urlid/46.1068.S.20230314.1714.026.
[51]XU P R, ZHANG L J, LU L P, et al. Patterns in genome-wide codon usage bias in representative species of lycophytes and ferns[J]. Genes,2024,15(7):887.
[52]FU Y, LIANG F S, LI C J, et al. Codon usage bias analysis in macronuclear genomes of ciliated protozoa[J]. Microorganisms,2023,11(7):1833.
[53]晁岳恩,吴政卿,杨会民,等. 11种植物psbA基因的密码子偏好性及聚类分析 [J]. 核农学报,2011,25(5):927-932.
[54]PING J, ZHONG X N, WANG T, et al. Structural characterization of Trivalvaria costata chloroplast genome and molecular evolution of rps12 gene in magnoliids[J]. Forests,2023,14:1101.
[55]MORTON B R, SO B G. Codon usage in plastid genes is correlated with context,position within the gene,and amino acid content[J]. Journal of Molecular Evolution,2000,50(2):184-193.
[56]GAO M Q, HUO X W, LU L T, et al. Analysis of codon usage patterns in Bupleurum falcatum chloroplast genome[J]. Chinese Herbal Medicines,2023,15(2):284-290.
[57]YANG J B, YANG S X, LI H T, et al. Comparative chloroplast genomes of Camellia species[J]. PLoS One,2013,8(8):e73053.
[58]HAO B Q, XIA Y Y, ZHANG Z Y, et al. Comparative analysis of the complete chloroplast genome sequences of four Camellia species[J]. Brazilian Journal of Botany,2024,47(1):93-103.
[59]LIN P, YIN H F, WANG K L, et al. Comparative genomic analysis uncovers the chloroplast genome variation and phylogenetic relationships of Camellia species[J]. Biomolecules,2022,12(10):1474.
[60]YE X M, HU D N, GUO Y P, et al. Complete chloroplast genome of Castanopsis sclerophylla (lindl.) schott:genome structure and comparative and phylogenetic analysis[J]. PLoS One,2019,14(7):e0212325.
[61]WU Z H, LIAO R, YANG T G, et al. Analysis of six chloroplast genomes provides insight into the evolution of Chrysosplenium (Saxifragaceae)[J]. BMC Genomics,2020,21(1):621.
[62]张文娟. 基于密码子水平的生物信息学分析及进化研究[D].上海:复旦大学,2006.
[63]胡振民,万青,李欢,等. 茶树CsNRT1.1基因密码子使用特性分析[J]. 江苏农业学报,2019,35(4):896-903.
[64]赵振宁,孙浩田,宋雨茹,等. 山楂属植物叶绿体基因组特征与密码子偏好性分析 [J]. 江苏农业学报,2023,39(2):504-517.
相似文献/References:
[1]李春雷.氟对茶树抗坏血酸?谷胱甘肽循环系统的影响[J].江苏农业学报,2016,(05):1018.[doi:10.3969/j.issn.1000-4440.2016.05.010]
LI Chun-lei.ASA-GSH cycle in tea plant exposed to fluoride application[J].,2016,(07):1018.[doi:10.3969/j.issn.1000-4440.2016.05.010]
[2]李春雷,倪德江.氟对幼龄茶树叶绿素含量及抗氧化酶活性的影响[J].江苏农业学报,2015,(05):1149.[doi:doi:10.3969/j.issn.1000-4440.2015.05.032]
LI Chun-lei,NI De-jiang.Chlorophyll content and antioxidation of young tea plant exposed to fluoride[J].,2015,(07):1149.[doi:doi:10.3969/j.issn.1000-4440.2015.05.032]
[3]陈春林,田易萍,陈林波,等.基于荧光标记的紫娟茶树转录组EST-SSR标记开发[J].江苏农业学报,2018,(04):747.[doi:doi:10.3969/j.issn.1000-4440.2018.04.005]
CHEN Chun-lin,TIAN Yi-ping,CHEN Lin-bo,et al.EST-SSR marker development of Zijuan tea tree transcriptome based on the fluorescent labeling[J].,2018,(07):747.[doi:doi:10.3969/j.issn.1000-4440.2018.04.005]
[4]胡振民,万青,李欢,等.茶树CsNRT1.1基因密码子使用特性分析[J].江苏农业学报,2019,(04):896.[doi:doi:10.3969/j.issn.1000-4440.2019.04.021]
HU Zhen min,WAN Qing,LI Huan,et al.Analysis of codon usage features of CsNRT1.1 gene in Camellia sinensis[J].,2019,(07):896.[doi:doi:10.3969/j.issn.1000-4440.2019.04.021]
[5]王治会,岳翠男,李琛,等.江西省茶树种质化学特性多样性分析与鉴定评价[J].江苏农业学报,2020,(01):172.[doi:doi:10.3969/j.issn.1000-4440.2020.01.024]
WANG Zhi-hui,YUE Cui-nan,LI Chen,et al.Diversity analysis and evaluation of chemical characteristics of tea germplasms in Jiangxi province[J].,2020,(07):172.[doi:doi:10.3969/j.issn.1000-4440.2020.01.024]
[6]赵洋,刘振,杨培迪,等.黄金茶种质资源生化成分的多样性分析[J].江苏农业学报,2021,(05):1285.[doi:doi:10.3969/j.issn.1000-4440.2021.05.025]
ZHAO Yang,LIU Zhen,YANG Pei-di,et al.Diversity analysis of biochemical components in Huangjincha (Camellia sinensis) germplasm resources[J].,2021,(07):1285.[doi:doi:10.3969/j.issn.1000-4440.2021.05.025]
[7]邰玉玲,杨林,王欢欢,等.茶特征成分合成相关新转录因子鉴定[J].江苏农业学报,2021,(06):1534.[doi:doi:10.3969/j.issn.1000-4440.2021.05.023]
TAI Yu-ling,YANG Lin,WANG Huan-huan,et al.Identification of new transcription factors related to the synthesis of characteristic components in tea[J].,2021,(07):1534.[doi:doi:10.3969/j.issn.1000-4440.2021.05.023]
[8]赵振宁,孙浩田,宋雨茹,等.山楂属植物叶绿体基因组特征与密码子偏好性分析[J].江苏农业学报,2023,(02):504.[doi:doi:10.3969/j.issn.1000-4440.2023.02.024]
ZHAO Zhen-ning,SUN Hao-tian,SONG Yu-ru,et al.Chloroplast genome characteristics and codon usage bias analysis of Crataegus L.[J].,2023,(07):504.[doi:doi:10.3969/j.issn.1000-4440.2023.02.024]
[9]黄双杰,曹梦珍,陈凌芝,等.氮素胁迫条件下茶树根系发育及生长素的响应[J].江苏农业学报,2023,(03):814.[doi:doi:10.3969/j.issn.1000-4440.2023.03.023]
HUANG Shuang-jie,CAO Meng-zhen,CHEN Ling-zhi,et al.Auxin response and tea plant roots formation regulated by nitrogen stress[J].,2023,(07):814.[doi:doi:10.3969/j.issn.1000-4440.2023.03.023]
[10]包国媛,李文辛,杨鑫光,等.海甜菜线粒体和叶绿体基因组密码子使用偏好性分析[J].江苏农业学报,2023,(09):1804.[doi:doi:10.3969/j.issn.1000-4440.2023.09.002]
BAO Guo-yuan,LI Wen-xin,YANG Xin-guang,et al.Analysis of codon usage bias in mitochondrial and chloroplast genomes of Beta vulgaris subsp.[J].,2023,(07):1804.[doi:doi:10.3969/j.issn.1000-4440.2023.09.002]