[1]包国媛,李文辛,杨鑫光,等.海甜菜线粒体和叶绿体基因组密码子使用偏好性分析[J].江苏农业学报,2023,(09):1804-1817.[doi:doi:10.3969/j.issn.1000-4440.2023.09.002]
 BAO Guo-yuan,LI Wen-xin,YANG Xin-guang,et al.Analysis of codon usage bias in mitochondrial and chloroplast genomes of Beta vulgaris subsp.[J].,2023,(09):1804-1817.[doi:doi:10.3969/j.issn.1000-4440.2023.09.002]
点击复制

海甜菜线粒体和叶绿体基因组密码子使用偏好性分析()
分享到:

江苏农业学报[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2023年09期
页码:
1804-1817
栏目:
遗传育种·生理生化
出版日期:
2023-12-31

文章信息/Info

Title:
Analysis of codon usage bias in mitochondrial and chloroplast genomes of Beta vulgaris subsp.
作者:
包国媛1李文辛1杨鑫光1王雅琼1234
(1.青海民族大学生态环境与资源学院,青海西宁810007;2.青海省特色经济植物高值化利用重点实验室,青海西宁810007;3.青海省生物技术与分析测试重点实验室,青海西宁810007;4.青藏高原资源化学与生态环境保护国家民委重点实验室,青海西宁810007)
Author(s):
BAO Guo-yuan1LI Wen-xin1YANG Xin-guang1WANG Ya-qiong1234
(1.The College of Ecological Environment and Resources, Qinghai Minzu University, Xining 810007, China; 2.Qinghai Provincial Key Laboratory of High-value Utilization of Characteristic Economic Plants, Xining 810007, China;3.Qinghai Provincial Biotechnology and Analytical Testing Key Laboratory, Xining 810007, China;4.Key Laboratory of Resource Chemistry and Eco-environmental Protection in Qinghai-Tibet Plateau, State Ethnic Affairs Commission, Xining 810007, China)
关键词:
海甜菜线粒体基因组叶绿体基因组密码子使用偏好性
Keywords:
Beta vulgaris subsp.mitochondrial genomechloroplast genomecodonusage bias
分类号:
S556.3
DOI:
doi:10.3969/j.issn.1000-4440.2023.09.002
文献标志码:
A
摘要:
为明确海甜菜线粒体和叶绿体基因组密码子使用偏好性及影响因素,以海甜菜线粒体基因组136条蛋白编码序列(CDS)和叶绿体基因组52条蛋白编码序列为数据源,利用Codon W 和CUSP软件,结合密码子使用的中性绘图分析、有效密码子数分析(ENC-plot)、偏倚性分析(PR2-plot),探究海甜菜线粒体和叶绿体基因组密码子使用的偏好性,并明确最优密码子。结果显示:海甜菜线粒体和叶绿体基因组中所有密码子的平均G+C碱基含量分别为43.42%和37.92%;密码子第3位碱基多为A或U。线粒体和叶绿体基因组有效密码子数(ENC)分别为36.44~61.00和35.00~52.01,平均值为52.23和46.10。自然选择是影响海甜菜线粒体和叶绿体基因组密码子使用偏好性的主要原因;GCU、AGG、GCU、CGA等27个密码子可视为最优密码子。本研究结果为海甜菜线粒体和叶绿体基因组的研究和遗传多样性分析提供了参考依据。
Abstract:
In order to clarify the codon usage bias and influencing factors of the mitochondrial and chloroplast genomes of Beta vulgaris subsp., 136 protein coding sequences (CDS) of the mitochondrial genome and 52 protein coding sequences of the chloroplast genome of Beta vulgaris subsp. were used as data source. Using Codon W and CUSP software, combined with the neutral mapping analysis of codon usage, effective number of codons (ENC-plot) and bias analysis (PR2-plot), the codon usage bias in mitochondrial and chloroplast genomes of Beta vulgaris subsp. was explored, and the optimal codon was determined. The results showed that the average G+C content of all codons in the mitochondrial and chloroplast genomes of Beta vulgaris subsp. was 43.42% and 37.92%, respectively. The third base of the codon was mostly A or U. The effective number of codons (ENC) of mitochondrial and chloroplast genomes was 36.44-61.00 and 35.00-52.01, respectively, with an average of 52.23 and 46.10. Natural selection was the main reason affecting the codon usage preference of mitochondrial and chloroplast genomes in Beta vulgaris subsp.. Twenty-seven codons, such as GCU, AGG, GCU and CGA, could be regarded as the optimal codons. The results of this study provide a reference for the study of mitochondrial and chloroplast genomes and genetic diversity analysis of Beta vulgaris subsp.

参考文献/References:

[1]黄兴. 多头带绦虫功能基因的原核表达及蛋白特性分析[D]. 成都:四川农业大学,2016.
[2]冯展,江媛,郑燕,等. 肉苁蓉属植物叶绿体基因组密码子偏好性分析[J]. 中草药,2023,54(5):1540-1550.
[3]ROMERO H, ZAVALA A, MUSTO H. Codon usage in Chlamydia trachomatis is the result of strand-specific mutational biases and a complex pattern of selective forces[J]. Nucleic Acids Research,2000,28(10):2084-2090.
[4]XU C, CAI X, CHEN Q, et al. Factors affecting synonymous codon usage bias in chloroplast genome of oncidium gower ramsey[J]. Evolutionary Bioinformatics,2011,7(7):271-278.
[5]中国科学院中国植物志委员会. 中国植物志第22卷:被子植物门双子叶植物纲壳斗科榆科马尾树科[M]. 北京:科学出版社,1998:263-298.
[6]郝新艳,刘嘉伟,米福贵. 杂花苜蓿叶绿体基因组密码子使用偏好性分析[J/OL]. 分子植物育种. https://kns.cnki.net/kcms2/detail/46.1068.S.20230524.1400.012.html.
[7]LIU H, LU Y, LAN B, et al. Codon usage by chloroplast gene is bias in Hemiptelea davidii[J]. Journal of Genetics,2020,99:1-11.
[8]WEI L, HE J, JIA X, et al. Analysis of codon usage bias of mitochondrial genome in Bombyx mori and its relation to evolution[J]. BMC Evolutionary Biology,2014,14:1-12.
[9]PANELLA L, LEWELLEN R T. Broadening the genetic base of sugar beet: introgression from wild relatives[J]. Euphytica,2007,154:383-400.
[10]CASTRO S, ROMEIRAS M M, CASTRO M, et al. Hidden diversity in wild Beta taxa from Portugal: insights from genome size and ploidy level estimations using flow cytometry[J]. Plant Science,2013,207:72-78.
[11]ASCARIN F, NBREGA, LEITE I S, et al. Assessing the diversity of sea beet (Beta vulgaris L. ssp. maritima) populations[J]. Journal of Agricultural Science and Technology,2021,23(3):685-698.
[12]VINCENT H, WIERSEMA J, KELL S, et al. A prioritized crop wild relative inventory to help underpin global food security[J]. Biological Conservation,2013,167:265-275.
[13]邹奕,吴则东,兴旺,等. 甜菜种质资源遗传多样性研究进展[J]. 中国糖料,2018,40(5):73-76,80.
[14]HANELT P, BUTTNER R, MANSFELD R. Mansfeld’s encyclopedia of agricultural and horticultural crops (except Ornamentals)[M]. New York:Springer,2001.
[15]OLIVEIRA S P A, NASCIMENTO H, SAMPAIO K B, et al. A review on bioactive compounds of beet (Beta vulgaris L. subsp. vulgaris) with special emphasis on their beneficial effects on gut microbiota and gastrointestinal health[J]. Critical Reviews in Food Science and Nutrition,2021,61(12):2022-2033.
[16]RIBEIRO I C, PINHERIRO C, RIBEIRO C M, et al. Genetic diversity and physiological performance of Portuguese wild beet (Beta vulgaris spp. maritima) from three contrasting habitats[J]. Frontiers in Plant Science,2016,7:1293.
[17]BANGAR S P, SING H A, CHAHDHARY V, et al. Bectroot as a novel ingredient for its versatile food applications[J]. Critical Review in Food Sci and Nutri,2023,63(26):8403-8427.
[18]王军伟,魏佑营,邱红,等. 盐胁迫对不同品种菠菜种子萌发特性的影响[J]. 山东农业科学,2007(6):48-50, 53.
[19]陶晓丽,王彦荣,刘志鹏. 牧草叶绿体基因组研究进展[J]. 草业科学,2015,32(6):978-987.
[20]赵稳. 人干扰素α-2b(HuIFNα-2b)基因的烟草细胞核转化及其叶绿体定点表达载体的构建[D]. 武汉:华中科技大学,2010.
[21]赵晶晶,汪琪璇,蔺欣,等. 线粒体功能障碍相关遗传性非综合征型听力损失的研究进展[J]. 中华耳科学杂志,2018,16(2):136-140.
[22]唐向民,杨守臻,陈怀珠,等. 栽培大豆和野生大豆线粒体基因组密码子使用偏性的比较分析[J]. 广西植物,2020,40(7):926-934.
[23]吴茜,姜梅,陈海梅,等. 旋覆花、湖北旋覆花和线叶旋覆花的叶绿体基因组比较分析和系统发育研究[J]. 药学学报,2020,55(5):1042-1049.
[24]夏玉玲. 中国野桑蚕线粒体基因组研究[D]. 重庆:西南农业大学,2003.
[25]KONG F , SUN P , CAO M , et al. Complete mitochondrial genome of Pyropia yezoensis: reasserting the revision of genus Porphyra.[J]. Mitochondrial DNA,2014,25(5):335-336.
[26]潘韵佳. 五倍子基原物种DNA条形码鉴定及叶绿体基因组解析[D]. 北京:北京协和医学院,2021.
[27]DARRAC A, VARRE J S, MARECHAL-DROUARD L, et al. Structural and content diversity of mitochondrial genome in beet: a comparative genomic analysis[J]. Genome Biology and Evolution,2011,3:723-736.
[28]HE B, DONG H, JIANG C, et al. Analysis of codon usage patterns in Ginkgo biloba reveals codon usage tendency from A/U-ending to G/C-ending[J]. Scientific Reports,2016,6(1):35927.
[29]原晓龙,李云琴,张劲峰,等. 降香黄檀叶绿体基因组密码子偏好性分析[J]. 广西植物,2019,41(4):622-630.
[30]辛雅萱,黎若竹,李鑫,等. 杧果叶绿体基因组密码子使用偏好性分析[J]. 中南林业科技大学学报,2021,41(9):148-156,165.
[31]王飞,赵文植,董章宏,等. 扁核木属植物叶绿体基因组特征分析[J]. 热带作物学报,2022,43(9):1759-1770.
[32]蔡元保,杨祥燕. 澳洲坚果光壳种叶绿体基因组的密码子使用偏好性及其影响因素分析[J]. 植物科学学报,2022,40(2):229-239.
[33]赖瑞联,陈瑾,冯新,等. 橄榄叶绿体基因组密码子偏好性特征[J]. 福建农林大学学报(自然科学版),2022,51(4):502-509.
[34]杨祥燕,蔡元保,谭秦亮,等. 菠萝叶绿体基因组密码子偏好性分析[J]. 热带作物学报,2022,43(3):439-446.
[35]徐盼. 鸭疫里默氏杆菌OmpA蛋白的免疫原性研究[D]. 成都:四川农业大学,2014.
[36]WRIGHT F . The effective number of codons’ used in a gene.[J]. Gene,1990,87(1):23-29.
[37]赵洋,杨阳,刘振,等. 茶树密码子用法分析[J]. 茶叶科学,2011,31(4):319-325.
[38]田春育,武自念,李贤松,等. 扁蓿豆叶绿体基因组密码子偏好性分析[J]. 草地学报,2021,29(12):2678-2684.
[39]王婧,王天翼,王罗云,等. 沙枣叶绿体全基因组序列及其使用密码子偏性分析[J]. 西北植物学报,2019,39(9):1559-1572.
[40]毛立彦,黄秋伟,龙凌云,等. 7种睡莲属植物叶绿体基因组密码子偏好性分析[J]. 西北林学院学报,2022,37(2):98-107.
[41]金刚,王丽萍,龙凌云,等. 普通野生稻线粒体蛋白质编码基因密码子使用偏好性的分析[J]. 植物科学学报,2019,37(2):188-197.
[42]侯梦薇,汪文睿,曹言勇,等. 玉米线粒体基因组密码子偏好性分析[J/OL]. 分子植物育种. https://kns.cnki.net/kcms/detail/46.1068.S.20211209.1844.010.html.
[43]吴朝昕,刘雪薇,李祖军,等. 大粒香水稻叶绿体基因组特征分析[J]. 广西植物,2022,42(11):1830-1839.
[44]吴朝昕,徐海峰,刘雪薇,等. 苟当3号水稻叶绿体基因组特征分析[J/OL]. 分子植物育种. https://kns.cnki.net/kcms/detail/46.1068.S.20220118.1548.006.html.
[45]高守舆,李钰莹,杨志青,等. 白羊草叶绿体基因组密码子使用偏好性分析[J/OL]. 草业学报,2023,32(7):85-95.
[46]牛俊梅,王昕玥,岳加蕊,等. 前胡(Peucedanum praeruptorum Dunn)叶绿体基因组密码子偏好性分析[J/OL]. 分子植物育种. https://kns.cnki.net/kcms/detail/46.1068.S.20221011.1111.002.html.
[47]喻凤,韩明. 紫花苜蓿叶绿体基因组密码子偏好性分析[J]. 广西植物,2021,41(12):2069-2076.
[48]卢志宏,田文勇,杨传东. 人参属植物叶绿体基因组特征和密码子偏好性分析[J/OL]. 分子植物育种. https://kns.cnki.net/kcms/detail/46.1068.S.20220720.1016.002.html.
[49]樊东昌,穆赢通,贾俊英,等. 乌头属药用植物叶绿体基因组密码子特征和系统发育分析[J/OL]. 分子植物育种. https://kns.cnki.net/kcms/detail/46.1068.S.20220711.1339.002.html.
[50]ZHOU M, LONG W, LI X. Patterns of synonymous codon usage bias in chloroplast genomes of seed plants[J]. Forestry Studies in China,2008,10:235-242.
[51]刘潮,韩利红,盛巧,等. 8种植物类甜蛋白家族基因进化及密码子特征分析[J]. 江苏农业科学,2022,50(10):44-51.
[52]王飞,辛雅萱,董章宏,等. 无刺龙舌兰叶绿体基因组特征及密码子偏好性分析[J]. 南方农业学报,2022,53(4):1030-1039.
[53]刘潮,韩利红,吴丽芳,等. 辣椒基因组密码子使用偏性分析[J]. 江苏农业科学,2022,50(5):16-22.
[54]王占军,吴子琦,王朝霞,等. 3个茶树品种WOX基因家族的进化及密码子偏好性比较[J]. 南京林业大学学报(自然科学版),2022,46(2):71-80.
[55]何积翠,喻达辉,白丽蓉. 瓜螺线粒体全基因组密码子偏好性分析[J]. 南方农业学报,2022,53(1):191-199.
[56]张海霞,王玉道,许雪妮. 苜蓿质膜内在蛋白编码基因MsPIPs家族的密码子偏好性分析 [J]. 江苏农业学报,2021,37(6):1393-1399.
[57]李凤,辛静,辛雅萱,等. 楸树叶绿体基因组密码子偏性分析[J]. 南方农业学报,2021,52(10):2735-2743.
[58]肖明昆,严炜,熊贤坤,等. 云南樟叶绿体基因组密码子偏好性分析[J]. 中南林业科技大学学报,2022,42(6):127-134.

备注/Memo

备注/Memo:
收稿日期:2023-03-29基金项目:青海民族大学研究生创新项目 (54M2022005);青海民族大学研究生精品示范课程项目(JK-2023-08);2023年中央科研创新平台建设项目——青海省林业草原生态系统功能维护及可持续开发利用科研创新团队(30160101141);青海民族大学2023年大学生创新创业训练计划项目作者简介:包国媛(1997-),女,青海互助人,硕士研究生,研究方向为植物资源开发利用。(E-mail)1791564133@qq.com通讯作者:王雅琼,(Tel)18297178818;(E-mail)wangyaqiong727@163.com
更新日期/Last Update: 2024-01-15