参考文献/References:
[1]TANG S, LIU Y, ZHENG N, et al. Temporal variation in nutrient requirements of tea (Camellia sinensis) in China based on QUEFTS analysis[J]. Scientific Reports, 2020, 10(1): 1745.
[2]马立锋,陈红金,单英杰,等. 浙江省绿茶主产区茶园施肥现状及建议[J]. 茶叶科学, 2013, 33(1): 74-84.
[3]康启兵. 茶树氮素营养及其生理生态学效应[C]. 重庆:中国茶叶学会, 2009.
[4]林郑和,钟秋生,陈常颂,等. 缺氮条件下不同品种茶树叶片光合特性的变化[J]. 茶叶科学, 2013, 33(6): 500-504.
[5]李海琳,王丽鸳,成浩,等. 氮素水平对茶树重要农艺性状和化学成分含量的影响[J]. 茶叶科学, 2017, 37(4): 383-391.
[6]胡国策,蒋家月,田坤红,等. 氮素形态和水平对茶树生理特性的影响[J]. 安徽农业大学学报, 2018, 45(4): 588-593.
[7]刘健伟,方寒寒,袁新跃,等. 氮素对茶树生理及品质成分影响的研究进展[J]. 茶叶学报, 2018, 59(3): 155-161.
[8]向芬,李维,刘红艳,等. 氮素水平对不同品种茶树光合及叶绿素荧光特性的影响[J]. 西北植物学报, 2018, 38(6): 1138-1145.
[9]林郑和,钟秋生,游小妹,等. 低氮对茶树生长及叶片抗氧化酶活性的影响[J]. 茶叶学报, 2019, 60(2): 57-63.
[10]林郑和,陈常颂,钟秋生,等. 低氮对不同茶树品种生物学特性的影响[J]. 茶叶学报, 2021, 62(4): 164-169.
[11]CHEN Y, WANG F, WU Z, et al. Effects of long-term nitrogen fertilization on the formation of metabolites related to tea quality in subtropical China[J]. Metabolites, 2021, 11(3): 146.
[12]LIN Z H, CHEN C S, ZHONG Q S, et al. The GC-TOF/MS-based Metabolomic analysis reveals altered metabolic profiles in nitrogen-deficient leaves and roots of tea plants (Camellia sinensis)[J]. BMC Plant Biology, 2021, 21(1): 506.
[13]LYNCH J. Root architecture and plant productivity[J].Plant Physiology, 1995, 109(1): 7-13.
[14]王新超,杨亚军,陈亮,等. 茶树氮素利用效率相关生理生化指标初探[J]. 作物学报, 2005, 31(7): 926-931.
[15]SUN X, CHEN F, YUAN L, et al. The physiological mechanism underlying root elongation in response to nitrogen deficiency in crop plants[J]. Planta, 2020, 251(4): 84.
[16]JIA Z T, VON WIRN N. Signaling pathways underlying nitrogen-dependent changes in root system architecture: from model to crop species[J]. Journal of Experimental Botany, 2020, 71(15): 4393-4404.
[17]LPEZ-BUCIO J, CRUZ-RAMREZ A, HERRERA-ESTRELLA L. The role of nutrient availability in regulating root architecture[J]. Current Opinion Plant Biology, 2003, 6(3): 280-287.
[18]OLATUNJI D, GEELEN D, VERSTRAETEN I. Control of endogenous auxin levels in plant root development[J]. International Journal of Molecular Sciences, 2017, 18(12): 2587.
[19]HU Q Q, SHU J Q, LI W M, et al. Role of auxin and nitrate signaling in the development of root system architecture[J]. Frontiers in Plant Science, 2021, 12: 690363.
[20]王瑜. 茶树叶片中生长素合成和信号转导的分子机制研究[D]. 南京: 南京农业大学, 2020: 5.
[21]LUO L, ZHANG Y, XU G. How does nitrogen shape plant architecture?[J]. Journal of Experimental Botany, 2020, 71(15): 4415-4427.
[22]SUN X, CHEN H, WANG P, et al. Low nitrogen induces root elongation via auxin-induced acid growth and auxin-regulated target of rapamycin (TOR) pathway in maize[J]. Journal of Plant Physiology, 2020, 254: 153281.
[23]DEVI L L, PANDEY A, GUPTA S, et al. The interplay of auxin and brassinosteroid signaling tunes root growth under low and different nitrogen forms[J]. Plant Physiology, 2022, 189(3): 1757-1773.
[24]付宇凡,张中伟,袁澍. 生长素在氮素调控根系发育中的作用机理研究[C]. 昆明:云南省科学技术协会, 2018: 476.
[25]孙虎威,王文亮,刘尚俊,等. 低氮胁迫下水稻根系的发生及生长素的响应[J]. 土壤学报, 2014, 51(5): 1096-1102.
[26]王立志,魏跃伟,黄明月,等. 低氮胁迫对烟草生物学性状、生长素及NtPINs 基因家族的影响[J]. 中国烟草学报, 2018, 24(1): 38-44.
[27]吴伯千,梁月荣,潘根生. 水培和土培茶树的显微及超微结构比较[J]. 浙江农业大学学报, 1992, 18(4): 21-24.
[28]王学奎. 植物生理生化实验原理和技术[M]. 2版. 北京: 高等教育出版社, 2006: 134.
[29]LIU W H, CHEN F F, WANG C E, et al. Indole-3-acetic acid in burkholderia pyrrocinia JK-SH007: enzymatic identification of the indole-3-acetamide synthesis pathway[J]. Fronters in Microbiology, 2019,10: 2559.
[30]CUI D J, YIN Y, LI H D, et al. Comparative transcriptome analysis of atmospheric pressure cold plasma enhanced early seedling growth in Arabidopsis thaliana[J]. Plasma Science and Technology, 2021, 23(8): 085502.
[31]WANG A, GUO J, WANG S, et al. BoPEP4, a C-terminally encoded plant elicitor peptide from broccoli, plays a role in salinity stress tolerance[J]. International Journal of Molecular Sciences, 2022, 23(6): 3090.
[32]MA W, LI J, QU B, et al. Auxin biosynthetic gene TAR2 is involved in low nitrogen-mediated reprogramming of root architecture in Arabidopsis[J]. Plant Journal, 2014, 78(1): 70-79.
[33]SHAO A, MA W, ZHAO X, et al. The auxin biosynthetic TRYPTOPHAN AMINOTRANSFERASE RELATED TaTAR2.1-3A increases grain yield of wheat[J]. Plant Physiology, 2017, 174(4): 2274-2288.
[34]GAO K, CHEN F, YUAN L, et al. A comprehensive analysis of root morphological changes and nitrogen allocation in maize in response to low nitrogen stress[J]. Plant Cell and Environment, 2015, 38(4): 740-750.
[35]GRUBER B D, GIEHL R F, FRIEDEL S, et al. Plasticity of the Arabidopsis root system under nutrient deficiencies[J]. Plant Physiology, 2013, 163(1): 161-179.
[36]GIEHL R F, VON WIRN N. Root nutrient foraging[J]. Plant Physiology, 2014, 166(2): 509-517.
[37]王浩,安宁,陈燕,等. IAA和脱萼剂处理对库尔勒香梨果实发育过程质地及相关酶活性的影响[J].江苏农业科学,2022,50(17):149-156.
[38]尚磊,高倩,李悦,等.蜂糖李果实内源激素含量与其生理落果的关系[J].南方农业学报,2022,53(11):3184-3191.
[39]张瀚,杨福孙,胡文斌,等. 火龙果生长发育过程中内源激素含量变化[J].江苏农业科学,2022,50(10):110-116.
[40]张吉玲,李明阳,李勇,等. 机械损伤处理杉木无性系萌蘖及内源激素含量差异[J].南京林业大学学报(自然科学版),2021,45(2):153-158.
[41]TIAN Q, CHEN F, LIU J, et al. Inhibition of maize root growth by high nitrate supply is correlated with reduced IAA levels in roots[J]. Journal of Plant Physiology, 2008, 165(9): 942-951.
相似文献/References:
[1]李春雷.氟对茶树抗坏血酸?谷胱甘肽循环系统的影响[J].江苏农业学报,2016,(05):1018.[doi:10.3969/j.issn.1000-4440.2016.05.010]
LI Chun-lei.ASA-GSH cycle in tea plant exposed to fluoride application[J].,2016,(03):1018.[doi:10.3969/j.issn.1000-4440.2016.05.010]
[2]李春雷,倪德江.氟对幼龄茶树叶绿素含量及抗氧化酶活性的影响[J].江苏农业学报,2015,(05):1149.[doi:doi:10.3969/j.issn.1000-4440.2015.05.032]
LI Chun-lei,NI De-jiang.Chlorophyll content and antioxidation of young tea plant exposed to fluoride[J].,2015,(03):1149.[doi:doi:10.3969/j.issn.1000-4440.2015.05.032]
[3]陈春林,田易萍,陈林波,等.基于荧光标记的紫娟茶树转录组EST-SSR标记开发[J].江苏农业学报,2018,(04):747.[doi:doi:10.3969/j.issn.1000-4440.2018.04.005]
CHEN Chun-lin,TIAN Yi-ping,CHEN Lin-bo,et al.EST-SSR marker development of Zijuan tea tree transcriptome based on the fluorescent labeling[J].,2018,(03):747.[doi:doi:10.3969/j.issn.1000-4440.2018.04.005]
[4]胡振民,万青,李欢,等.茶树CsNRT1.1基因密码子使用特性分析[J].江苏农业学报,2019,(04):896.[doi:doi:10.3969/j.issn.1000-4440.2019.04.021]
HU Zhen min,WAN Qing,LI Huan,et al.Analysis of codon usage features of CsNRT1.1 gene in Camellia sinensis[J].,2019,(03):896.[doi:doi:10.3969/j.issn.1000-4440.2019.04.021]
[5]王治会,岳翠男,李琛,等.江西省茶树种质化学特性多样性分析与鉴定评价[J].江苏农业学报,2020,(01):172.[doi:doi:10.3969/j.issn.1000-4440.2020.01.024]
WANG Zhi-hui,YUE Cui-nan,LI Chen,et al.Diversity analysis and evaluation of chemical characteristics of tea germplasms in Jiangxi province[J].,2020,(03):172.[doi:doi:10.3969/j.issn.1000-4440.2020.01.024]
[6]赵洋,刘振,杨培迪,等.黄金茶种质资源生化成分的多样性分析[J].江苏农业学报,2021,(05):1285.[doi:doi:10.3969/j.issn.1000-4440.2021.05.025]
ZHAO Yang,LIU Zhen,YANG Pei-di,et al.Diversity analysis of biochemical components in Huangjincha (Camellia sinensis) germplasm resources[J].,2021,(03):1285.[doi:doi:10.3969/j.issn.1000-4440.2021.05.025]
[7]邰玉玲,杨林,王欢欢,等.茶特征成分合成相关新转录因子鉴定[J].江苏农业学报,2021,(06):1534.[doi:doi:10.3969/j.issn.1000-4440.2021.05.023]
TAI Yu-ling,YANG Lin,WANG Huan-huan,et al.Identification of new transcription factors related to the synthesis of characteristic components in tea[J].,2021,(03):1534.[doi:doi:10.3969/j.issn.1000-4440.2021.05.023]
[8]刘悦,曲浩,田易萍,等.转录组测序分析外源水杨酸诱导茶树热激蛋白基因的响应[J].江苏农业学报,2024,(04):607.[doi:doi:10.3969/j.issn.1000-4440.2024.04.004]
LIU Yue,QU Hao,TIAN Yi-ping,et al.Transcriptome analysis of the response of heat shock protein encoding genes induced by salicylic acid in tea plants[J].,2024,(03):607.[doi:doi:10.3969/j.issn.1000-4440.2024.04.004]
[9]刘财国,吕水源,于文涛,等.北苑贡茶茶树种质遗传多样性及其与青心乌龙茶树的亲缘关系[J].江苏农业学报,2024,(05):935.[doi:doi:10.3969/j.issn.1000-4440.2024.05.018]
LIU Caiguo,LYU Shuiyuan,YU Wentao,et al.Genetic diversity of Beiyuan tribute tea germplasms and their genetic relationship with Qingxinwulong[J].,2024,(03):935.[doi:doi:10.3969/j.issn.1000-4440.2024.05.018]