[1]张春华,沈志军,马瑞娟,等.桃Ⅱ型NADH脱氢酶家族基因鉴定和表达分析[J].江苏农业学报,2022,38(04):1049-1061.[doi:doi:10.3969/j.issn.1000-4440.2022.04.023]
 ZHANG Chun-hua,SHEN Zhi-jun,MA Rui-juan,et al.Identification and expression analysis of the type Ⅱ NADH dehydrogenase family genes in peach[J].,2022,38(04):1049-1061.[doi:doi:10.3969/j.issn.1000-4440.2022.04.023]
点击复制

桃Ⅱ型NADH脱氢酶家族基因鉴定和表达分析()
分享到:

江苏农业学报[ISSN:1006-6977/CN:61-1281/TN]

卷:
38
期数:
2022年04期
页码:
1049-1061
栏目:
园艺
出版日期:
2022-08-31

文章信息/Info

Title:
Identification and expression analysis of the type Ⅱ NADH dehydrogenase family genes in peach
作者:
张春华沈志军马瑞娟张圆圆郭绍雷蔡志翔俞明亮
(江苏省农业科学院果树研究所/江苏省高效园艺作物遗传改良重点实验室,江苏南京210014)
Author(s):
ZHANG Chun-huaSHEN Zhi-junMA Rui-juanZHANG Yuan-yuanGUO Shao-leiCAI Zhi-xiangYU Ming-liang
(Institute of Pomology, Jiangsu Academy of Agricultural Sciences / Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Nanjing 210014, China)
关键词:
Ⅱ型NADH脱氢酶基因家族基因表达
Keywords:
peachtype Ⅱ NADH dehydrogenasegene familygene expression
分类号:
S662.1
DOI:
doi:10.3969/j.issn.1000-4440.2022.04.023
文献标志码:
A
摘要:
Ⅱ型烟酰胺腺嘌呤二核苷酸脱氢酶(TypeⅡ NADH dehydrogenase)在所有已全基因组测序的植物中均存在,具有多种功能,尤其在大多数植物呼吸链中起重要作用。本研究对桃Ⅱ型NADH脱氢酶家族基因进行了鉴定,确定了桃Ⅱ型NADH脱氢酶基因家族成员数目、亚家族分类,并分别进行了克隆,同时分析了它的进化关系、在基因组骨架上分布、启动子区域、基因结构、不同组织表达水平及其编码的蛋白质结构。结果显示,桃Ⅱ型NADH脱氢酶基因家族共有6个成员,分布在3~6号染色体上,被分为3个亚家族:NDA、NDB、NDC。桃Ⅱ型NADH脱氢酶家族成员,脂肪族氨基酸指数范围是80.63~95.75,等电点预测结果表明Prupe.3G231400.1和Prupe.5G076700.1是酸性蛋白质,其余4个是碱性蛋白质;NDA和NDC亚家族成员二级结构均以无规则卷曲为主要构成元件,NDB亚家族成员二级结构均以α-螺旋为主要构成元件。Ⅱ型NADH脱氢酶家族基因在桃不同组织中的表达水平差异较大,5个基因在老叶中表达量相对较高,在成熟果肉中表达量低。这些结果为下一步进行Ⅱ型NADH脱氢酶基因功能验证奠定了重要基础。
Abstract:
Type Ⅱ nicotinamide adenine dinucleotide dehydrogenase (type Ⅱ NADH dehydrogenase) exists in all plants that have been sequenced by the whole genome and has a variety of functions, especially plays an important role in the respiratory chains of most plants. Type Ⅱ NADH dehydrogenase family genes were identified in this study, and the number of member and subfamily classification were determined. At the same time, the phylogenetic relationship, the distribution on the scaffold, promoter region, gene structure, expression levels in different tissues and encoded protein structure were analyzed. The results showed that type Ⅱ NADH dehydrogenase gene family in peach contained six members, which were located on the chromosome 3-6 and clustered into three subfamilies: NDA, NDB and NDC. All members of peach type Ⅱ NADH dehydrogenase family were stable amphoteric proteins, and the aliphatic amino acid index ranged from 80.63 to 95.75. The isoelectric point prediction results showed that Prupe.3G231400.1 and Prupe.5G076700.1 were acidic proteins, and the other four were basic proteins. The secondary structure of NDA and NDC subfamily members was mainly composed of random coil, while α-helix was the main component for the secondary structure of NDB subfamily members. The expression levels of type Ⅱ NADH dehydrogenase family genes in different tissues of peach were quite different. Among them, the expression levels of five genes were relatively high in old leaves and low in mature flesh. These results lay an important foundation for the functional verification of type Ⅱ NADH dehydrogenase gene in the future.

参考文献/References:

[1]MELO A M, BANDEIRAS T M, TEIXEIRA M. New insights into typeⅡNAD(P)H: quinone oxidoreductases[J]. Microbiology and Molecular Biology Reviews, 2004, 68(4):603-616.
[2]KERSCHER S, DROSE S, ZICKERMANN V, et al. The three families of respiratory NADH dehydrogenases[J]. Bioenergetics, 2007, 45:185-222.
[3]SKULACHEV V P, BOGACHEV A V, KASPARINSKY F O. Principles of bioenergetic.[M]. Berlin:Springer Verlag,2012:119-138.
[4]MARREIROS B C, SENA F V, SOUSA F M, et al. TypeⅡNADH: quinone oxidoreductase family: phylogenetic distribution, structural diversity and evolutionary divergences[J]. Environmental Microbiology, 2016, 18(12):4697-4709.
[5]李文斐. Ⅱ型NADH脱氢酶NDH2的结构与功能研究[D]. 北京:清华大学,2015.
[6]CARDOL P, GONZA′LEZ-HALPHEN D, REYES-PRIETO A, et al. The mitochondrial oxidative phosphorylation proteome of Chlamydomonas reinhardtiideduced from the genome sequencing project[J]. Plant Physiology, 2005, 137(2):447-459.
[7]BANDEIRASA T M, SALGUEIRO C, KLETZINC A, et al. Acidianus ambivalens type-ⅡNADH dehydrogenase: genetic characterisation and identification of the flavin moiety as FMN[J]. FEBS Letters, 2002, 531(2):273-277.
[8]MELO A M P, ROBERTS T H, MOLLER I M. Evidence for the presence of two rotenone-insensitive NAD(P)H dehydrogenases on the inner surface of the inner membrane of potato tuber mitochondria[J]. Biochimica Biophysica Acta, 1996, 1276(2):133-139.
[9]MICHALECKA A M, STAFFAN-SVENSSON A, JOHANSSON F I, et al. Arabidopsis genes encoding mitochondrial typeⅡNAD(P)H dehydrogenases have different evolutionary origin and show distinct responses to light[J]. Plant Physiology, 2015, 133(2):642-652.
[10]RIBAS-CARBO M, ROBINSON S A, GONZALEZ-MELERr M A, et al. Effects of light on respiration and oxygen isotope fractionation in soybean cotyledons[J]. Plant, Cell and Environment, 2000, 23(9):983-989.
[11]RASMUSSON A G, SVENSSON A S, KNOOP V, et al. Homologues of yeast and bacterial rotenone-insensitive NADH dehydrogenases in higher eukaryotes: two enzymes are present in potato mitochondria[J]. The Plant Journal, 1999, 20(1):79-87.
[12]LUETHY M H, THELEN J J, KNUDTEN A F, et al. Purification, characterization, and submitochondrial localization of a 58-kilodalton NAD(P)H dehydrogenase[J]. Plant Physiology, 1995, 107(2):443-450.
[13]LUETHY M H, HAYES M K, ELTHON T E. Partial purification and characterization of three NAD(P)H dehydrogenases from Beta vulgaris mitochondria[J]. Plant Physiology, 1991, 97(4): 1317-1322.
[14]IAN MENZ R, DAY D A. Purification and characterization of a 43 kDa rotenone-insensitive NADH dehydrogenase from plant mitochondria[J]. The Journal of Biological Chemistry,1996, 271(38):23117-23120.
[15]JACOBY R P, LI L, HUANG S B, et al. Mitochondrial composition, function and stress response in plants[J]. Journal of Integrative Plant Biology, 2012, 54 (11): 887-906.
[16]SVENSSON A S, RASMUSSON A G. Light-dependent gene expression for proteins in the respiratory chain of potato leaves[J]. The Plant Journal, 2001, 28(1):73-82.
[17]SVENSSON A S, JOHANSSON F I, MOLLER I M, et al. Cold stress decreases the capacity for respiratory NADH oxidation in potato leaves[J]. FEBS Letters, 2002, 517(1/3):79-82.
[18]LECLER R, VIGEOLAS H, EMOND-ALT B, et al. Characterization of an internal type-ⅡNADH dehydrogenase from Chlamydomonas reinhardtii mitochondria[J]. Current Genetics,2012, 58:205-216.
[19]VERDE I, ABBOTT A G, SCLABRIN S, et al. The high-quality draft genome of peach (Prunus persica) identifies unique patterns of genetic diversity, domestication and genome evolution[J]. Nature Genetics, 2013, 45:487-494.
[20]CAO K, YANG X W, LI Y, et al. New high-quality peach (Prunus persica L. Batsch) genome assembly to analyze the molecular evolutionary mechanism of volatile compounds in peach fruits[J]. The Plant Journal, 2021,108(1):281-295.
[21]ZHANG C, FENG R C, MA R J, et al. Genome-wide analysis of basic helix-loop-helix superfamily members in peach[J]. PLoS One, 2018, 13(4): e0195974.
[22]XU L, LAW S R, MURCHA M W, et al. The dual targeting ability of typeⅡNAD(P)H dehydrogenases arose early in land plant evolution[J]. BMC Plant Biology, 2013, 13:100-114.
[23]ELHAFEZ D, MURCHAM W, CLIFTON R, et al. Characterization of mitochondrial alternative NAD(P)H dehydrogenases in Arabidopsis: intraorganelle location and expression[J]. Plant and Cell Physiology, 2006, 47(1):43-54.
[24]NARSAI R, LAW S R, CARRIE C, et al. In-depth temporal transcriptome profiling reveals a crucial developmental switch with roles for RNA processing and organelle metabolism that are essential for germination in Arabidopsis[J]. Plant Physiology, 2011, 157(3):1342-1362.
[25]BENHARRAT H, DELAVAULT P, THEODET C, et al. RbcL plastid pseudogene as a tool for Orobanche (Subsection Minores) identification[J]. Plant Biology, 2000, 2(1):34-39.
[26]CASTILLO-DAVIS C I, MEKHEDOV S L, HARTL D L, et al. Selection for short introns in highly expressed genes[J]. Nature Genetics, 2002, 31:415-418.
[27]KAWASAKI H, KRETSINGER R H. Structural and functional diversity of EF-hand proteins: evolutionary perspectives[J]. Protein Science, 2017, 26(10):1898-1920.
[28]DAY I S, REDDY V S, SHAD ALI G, et al. Analysis of EF-hand-containing proteins in Arabidopsis[J]. Genome Biology, 2002, 3(10):1-24.
[29]MICHALECKA A M, AGIUS S C, MOLLER I M, et al. Identification of a mitochondrial external NADPH dehydrogenase by overexpression in transgenic Nicotiana sylvestris[J]. The Plant Journal, 2004, 37(3):415-425.
[30]NELSON M R, THULIN E, FAGAN P A, et al. The EF-hand domain: a globally cooperative structural unit[J]. Protein Science, 2002, 11(2):198-205.
[31]CARRIE C, MURCHA M W, KUEHN K, et al. TypeⅡ NAD(P)H dehydrogenases are targeted to mitochondria and chloroplasts or peroxisomes in Arabidopsis thaliana[J]. FEBS Letters, 2008, 582(20):3073-3079.
[32]SURPIN M, CHORY J. The coordination of nuclear and organellar genome in eukaryotic cells[J]. Essays in Biochemistry, 1997, 32:113-125.
[33]HEDTKE B, WAGNER I, BORNER T, et al. Inter-organellar crosstalk in higher plants: impaired chloroplast development affects mitochondrial gene and transcript levels[J]. The Plant Journal, 1999, 19(6): 635-643.
[34]TERASHIMA M, SPECHT M, NAUMANN B, et al. Characterizing the anaerobic response of Chlamydomonas reinhardtii by quantitative proteomics[J]. Mol Cell Proteomics, 2010, 9(7):1514-1532.
[35]NAKAMURA M, NOGUCHI K. Tolerant mechanisms to O2 deficiency under submergence conditions in plants[J]. Journal of Plant Research, 2020,133:343-371.

相似文献/References:

[1]蔡志翔,沈志军,马瑞娟,等.桃同株叶片杂色材料的MSAP分析[J].江苏农业学报,2016,(03):662.[doi:10.3969/j.issn.1000-4440.2016.03.027]
 CAI Zhi-xiang,SHEN Zhi-jun,MA Rui-juan,et al.Analysis of leaf-variegated peach by methylation-sensitive amplification polymorphism[J].,2016,(04):662.[doi:10.3969/j.issn.1000-4440.2016.03.027]
[2]廖亚运,张斌斌,马瑞娟,等.采前喷钙对金陵黄露桃钙吸收及细胞超微结构的影响[J].江苏农业学报,2016,(05):1171.[doi:10.3969/j.issn.1000-4440.2016.05.034]
 LIAO Ya-yun,ZHANG Bin-bin,MA Rui-juan,et al.Calcium absorption and cell ultrastructure of Jinlinghuanglu peach in response to pre-harvest calcium solutions spraying[J].,2016,(04):1171.[doi:10.3969/j.issn.1000-4440.2016.05.034]
[3]张杰伟,任飞,张中保,等.桃磷酸肌醇特异性磷脂酶 C 基因家族鉴定与分析[J].江苏农业学报,2017,(01):185.[doi:10.3969/j.issn.1000-4440.2017.01.030 ]
 ZHANG Jie-wei,REN Fei,ZHANG Zhong-bao,et al.Genome-wide analysis and identification of phosphoinositide-specific phospholipase C gene family in Lovell peach (Prunus persica L.)[J].,2017,(04):185.[doi:10.3969/j.issn.1000-4440.2017.01.030 ]
[4]严娟,宋志忠,蔡志翔,等.3种果肉颜色桃原花青素积累[J].江苏农业学报,2018,(03):651.[doi:doi:10.3969/j.issn.1000-4440.2018.03.025]
 YAN Juan,SONG Zhi-zhong,CAI Zhi-xiang,et al.Proanthocyanidin accumulation in peach fruit with three types of flesh color[J].,2018,(04):651.[doi:doi:10.3969/j.issn.1000-4440.2018.03.025]
[5]宋志忠,许建兰,张斌斌,等.叶面喷施钾肥对霞脆桃果实品质及KUP基因表达的影响[J].江苏农业学报,2018,(05):1107.[doi:doi:10.3969/j.issn.1000-4440.2018.05.020]
 SONG Zhi-zhong,XU Jian-lan,ZHANG Bin-bin,et al.Effect of foliar spraying of potassium fertilizer on Xiacui peach quality and expression of KUP transporter family genes[J].,2018,(04):1107.[doi:doi:10.3969/j.issn.1000-4440.2018.05.020]
[6]卯新蕊,李昊聪,申志慧,等.桃果实矿质元素与糖酸指标的相关性分析[J].江苏农业学报,2020,(01):164.[doi:doi:10.3969/j.issn.1000-4440.2020.01.023]
 MAO Xin-rui,LI Hao-cong,SHEN Zhi-hui,et al.Correlation analysis of mineral elements and sugar and acid contents in peach fruit[J].,2020,(04):164.[doi:doi:10.3969/j.issn.1000-4440.2020.01.023]
[7]程金金,吴世文,陈小龙,等.桃脆片加工过程中3种农药残留动态[J].江苏农业学报,2021,(02):517.[doi:doi:10.3969/j.issn.1000-4440.2021.02.030]
 CHENG Jin-jin,WU Shi-wen,CHEN Xiao-long,et al.Dynamics of three pesticide residues during the processing of peach crisps[J].,2021,(04):517.[doi:doi:10.3969/j.issn.1000-4440.2021.02.030]
[8]张斌斌,陈星星,王娜,等.基于果实品质指标的不同桃品种近冰温贮藏特性比较[J].江苏农业学报,2021,(04):998.[doi:doi:10.3969/j.issn.1000-4440.2021.04.024]
 ZHANG Bin-bin,CHEN Xing-xing,WANG Na,et al.Comparison of near-freezing temperature storage characteristics of different peach varieties based on fruit quality index[J].,2021,(04):998.[doi:doi:10.3969/j.issn.1000-4440.2021.04.024]
[9]徐子媛,严娟,蔡志翔,等.桃果实糖酸和酚类物质与口感风味的相关性[J].江苏农业学报,2022,38(01):190.[doi:doi:10.3969/j.issn.1000-4440.2022.01.023]
 XU Zi-yuan,YAN Juan,CAI Zhi-xiang,et al.Correlation between soluble sugar, organic acid and phenolic substances with tasted flavor in peach fruit[J].,2022,38(04):190.[doi:doi:10.3969/j.issn.1000-4440.2022.01.023]
[10]张圆圆,刘文敬,张斌斌,等.桃内酯芳香物质合成相关的环氧化物水解酶候选基因的鉴别[J].江苏农业学报,2023,(01):178.[doi:doi:10.3969/j.issn.1000-4440.2023.01.021]
 ZHANG Yuan-yuan,LIU Wen-jing,ZHANG Bin-bin,et al.Identification of candidate epoxide hydrolase genes involved in the biosynthesis of lactone volatile compounds in peach (Prunus persica L.)[J].,2023,(04):178.[doi:doi:10.3969/j.issn.1000-4440.2023.01.021]

备注/Memo

备注/Memo:
收稿日期:2021-09-11基金项目:现代农业产业技术体系建设专项(CARS-30); 江苏省基础研究计划(自然科学基金)面上项目(BK20201237)作者简介:张春华(1979-),女,吉林永吉人,博士,研究员,主要从事桃育种和果实品质分子机理研究。(E-mail)chunhua3217626@aliyun.com通讯作者:俞明亮,(E-mail)mly1008@aliyun.com
更新日期/Last Update: 2022-09-06