参考文献/References:
[1]MELO A M, BANDEIRAS T M, TEIXEIRA M. New insights into typeⅡNAD(P)H: quinone oxidoreductases[J]. Microbiology and Molecular Biology Reviews, 2004, 68(4):603-616.
[2]KERSCHER S, DROSE S, ZICKERMANN V, et al. The three families of respiratory NADH dehydrogenases[J]. Bioenergetics, 2007, 45:185-222.
[3]SKULACHEV V P, BOGACHEV A V, KASPARINSKY F O. Principles of bioenergetic.[M]. Berlin:Springer Verlag,2012:119-138.
[4]MARREIROS B C, SENA F V, SOUSA F M, et al. TypeⅡNADH: quinone oxidoreductase family: phylogenetic distribution, structural diversity and evolutionary divergences[J]. Environmental Microbiology, 2016, 18(12):4697-4709.
[5]李文斐. Ⅱ型NADH脱氢酶NDH2的结构与功能研究[D]. 北京:清华大学,2015.
[6]CARDOL P, GONZA′LEZ-HALPHEN D, REYES-PRIETO A, et al. The mitochondrial oxidative phosphorylation proteome of Chlamydomonas reinhardtiideduced from the genome sequencing project[J]. Plant Physiology, 2005, 137(2):447-459.
[7]BANDEIRASA T M, SALGUEIRO C, KLETZINC A, et al. Acidianus ambivalens type-ⅡNADH dehydrogenase: genetic characterisation and identification of the flavin moiety as FMN[J]. FEBS Letters, 2002, 531(2):273-277.
[8]MELO A M P, ROBERTS T H, MOLLER I M. Evidence for the presence of two rotenone-insensitive NAD(P)H dehydrogenases on the inner surface of the inner membrane of potato tuber mitochondria[J]. Biochimica Biophysica Acta, 1996, 1276(2):133-139.
[9]MICHALECKA A M, STAFFAN-SVENSSON A, JOHANSSON F I, et al. Arabidopsis genes encoding mitochondrial typeⅡNAD(P)H dehydrogenases have different evolutionary origin and show distinct responses to light[J]. Plant Physiology, 2015, 133(2):642-652.
[10]RIBAS-CARBO M, ROBINSON S A, GONZALEZ-MELERr M A, et al. Effects of light on respiration and oxygen isotope fractionation in soybean cotyledons[J]. Plant, Cell and Environment, 2000, 23(9):983-989.
[11]RASMUSSON A G, SVENSSON A S, KNOOP V, et al. Homologues of yeast and bacterial rotenone-insensitive NADH dehydrogenases in higher eukaryotes: two enzymes are present in potato mitochondria[J]. The Plant Journal, 1999, 20(1):79-87.
[12]LUETHY M H, THELEN J J, KNUDTEN A F, et al. Purification, characterization, and submitochondrial localization of a 58-kilodalton NAD(P)H dehydrogenase[J]. Plant Physiology, 1995, 107(2):443-450.
[13]LUETHY M H, HAYES M K, ELTHON T E. Partial purification and characterization of three NAD(P)H dehydrogenases from Beta vulgaris mitochondria[J]. Plant Physiology, 1991, 97(4): 1317-1322.
[14]IAN MENZ R, DAY D A. Purification and characterization of a 43 kDa rotenone-insensitive NADH dehydrogenase from plant mitochondria[J]. The Journal of Biological Chemistry,1996, 271(38):23117-23120.
[15]JACOBY R P, LI L, HUANG S B, et al. Mitochondrial composition, function and stress response in plants[J]. Journal of Integrative Plant Biology, 2012, 54 (11): 887-906.
[16]SVENSSON A S, RASMUSSON A G. Light-dependent gene expression for proteins in the respiratory chain of potato leaves[J]. The Plant Journal, 2001, 28(1):73-82.
[17]SVENSSON A S, JOHANSSON F I, MOLLER I M, et al. Cold stress decreases the capacity for respiratory NADH oxidation in potato leaves[J]. FEBS Letters, 2002, 517(1/3):79-82.
[18]LECLER R, VIGEOLAS H, EMOND-ALT B, et al. Characterization of an internal type-ⅡNADH dehydrogenase from Chlamydomonas reinhardtii mitochondria[J]. Current Genetics,2012, 58:205-216.
[19]VERDE I, ABBOTT A G, SCLABRIN S, et al. The high-quality draft genome of peach (Prunus persica) identifies unique patterns of genetic diversity, domestication and genome evolution[J]. Nature Genetics, 2013, 45:487-494.
[20]CAO K, YANG X W, LI Y, et al. New high-quality peach (Prunus persica L. Batsch) genome assembly to analyze the molecular evolutionary mechanism of volatile compounds in peach fruits[J]. The Plant Journal, 2021,108(1):281-295.
[21]ZHANG C, FENG R C, MA R J, et al. Genome-wide analysis of basic helix-loop-helix superfamily members in peach[J]. PLoS One, 2018, 13(4): e0195974.
[22]XU L, LAW S R, MURCHA M W, et al. The dual targeting ability of typeⅡNAD(P)H dehydrogenases arose early in land plant evolution[J]. BMC Plant Biology, 2013, 13:100-114.
[23]ELHAFEZ D, MURCHAM W, CLIFTON R, et al. Characterization of mitochondrial alternative NAD(P)H dehydrogenases in Arabidopsis: intraorganelle location and expression[J]. Plant and Cell Physiology, 2006, 47(1):43-54.
[24]NARSAI R, LAW S R, CARRIE C, et al. In-depth temporal transcriptome profiling reveals a crucial developmental switch with roles for RNA processing and organelle metabolism that are essential for germination in Arabidopsis[J]. Plant Physiology, 2011, 157(3):1342-1362.
[25]BENHARRAT H, DELAVAULT P, THEODET C, et al. RbcL plastid pseudogene as a tool for Orobanche (Subsection Minores) identification[J]. Plant Biology, 2000, 2(1):34-39.
[26]CASTILLO-DAVIS C I, MEKHEDOV S L, HARTL D L, et al. Selection for short introns in highly expressed genes[J]. Nature Genetics, 2002, 31:415-418.
[27]KAWASAKI H, KRETSINGER R H. Structural and functional diversity of EF-hand proteins: evolutionary perspectives[J]. Protein Science, 2017, 26(10):1898-1920.
[28]DAY I S, REDDY V S, SHAD ALI G, et al. Analysis of EF-hand-containing proteins in Arabidopsis[J]. Genome Biology, 2002, 3(10):1-24.
[29]MICHALECKA A M, AGIUS S C, MOLLER I M, et al. Identification of a mitochondrial external NADPH dehydrogenase by overexpression in transgenic Nicotiana sylvestris[J]. The Plant Journal, 2004, 37(3):415-425.
[30]NELSON M R, THULIN E, FAGAN P A, et al. The EF-hand domain: a globally cooperative structural unit[J]. Protein Science, 2002, 11(2):198-205.
[31]CARRIE C, MURCHA M W, KUEHN K, et al. TypeⅡ NAD(P)H dehydrogenases are targeted to mitochondria and chloroplasts or peroxisomes in Arabidopsis thaliana[J]. FEBS Letters, 2008, 582(20):3073-3079.
[32]SURPIN M, CHORY J. The coordination of nuclear and organellar genome in eukaryotic cells[J]. Essays in Biochemistry, 1997, 32:113-125.
[33]HEDTKE B, WAGNER I, BORNER T, et al. Inter-organellar crosstalk in higher plants: impaired chloroplast development affects mitochondrial gene and transcript levels[J]. The Plant Journal, 1999, 19(6): 635-643.
[34]TERASHIMA M, SPECHT M, NAUMANN B, et al. Characterizing the anaerobic response of Chlamydomonas reinhardtii by quantitative proteomics[J]. Mol Cell Proteomics, 2010, 9(7):1514-1532.
[35]NAKAMURA M, NOGUCHI K. Tolerant mechanisms to O2 deficiency under submergence conditions in plants[J]. Journal of Plant Research, 2020,133:343-371.
相似文献/References:
[1]蔡志翔,沈志军,马瑞娟,等.桃同株叶片杂色材料的MSAP分析[J].江苏农业学报,2016,(03):662.[doi:10.3969/j.issn.1000-4440.2016.03.027]
CAI Zhi-xiang,SHEN Zhi-jun,MA Rui-juan,et al.Analysis of leaf-variegated peach by methylation-sensitive amplification polymorphism[J].,2016,(04):662.[doi:10.3969/j.issn.1000-4440.2016.03.027]
[2]廖亚运,张斌斌,马瑞娟,等.采前喷钙对金陵黄露桃钙吸收及细胞超微结构的影响[J].江苏农业学报,2016,(05):1171.[doi:10.3969/j.issn.1000-4440.2016.05.034]
LIAO Ya-yun,ZHANG Bin-bin,MA Rui-juan,et al.Calcium absorption and cell ultrastructure of Jinlinghuanglu peach in response to pre-harvest calcium solutions spraying[J].,2016,(04):1171.[doi:10.3969/j.issn.1000-4440.2016.05.034]
[3]张杰伟,任飞,张中保,等.桃磷酸肌醇特异性磷脂酶 C 基因家族鉴定与分析[J].江苏农业学报,2017,(01):185.[doi:10.3969/j.issn.1000-4440.2017.01.030
]
ZHANG Jie-wei,REN Fei,ZHANG Zhong-bao,et al.Genome-wide analysis and identification of phosphoinositide-specific phospholipase C gene family in Lovell peach (Prunus persica L.)[J].,2017,(04):185.[doi:10.3969/j.issn.1000-4440.2017.01.030
]
[4]严娟,宋志忠,蔡志翔,等.3种果肉颜色桃原花青素积累[J].江苏农业学报,2018,(03):651.[doi:doi:10.3969/j.issn.1000-4440.2018.03.025]
YAN Juan,SONG Zhi-zhong,CAI Zhi-xiang,et al.Proanthocyanidin accumulation in peach fruit with three types of flesh color[J].,2018,(04):651.[doi:doi:10.3969/j.issn.1000-4440.2018.03.025]
[5]宋志忠,许建兰,张斌斌,等.叶面喷施钾肥对霞脆桃果实品质及KUP基因表达的影响[J].江苏农业学报,2018,(05):1107.[doi:doi:10.3969/j.issn.1000-4440.2018.05.020]
SONG Zhi-zhong,XU Jian-lan,ZHANG Bin-bin,et al.Effect of foliar spraying of potassium fertilizer on Xiacui peach quality and expression of KUP transporter family genes[J].,2018,(04):1107.[doi:doi:10.3969/j.issn.1000-4440.2018.05.020]
[6]卯新蕊,李昊聪,申志慧,等.桃果实矿质元素与糖酸指标的相关性分析[J].江苏农业学报,2020,(01):164.[doi:doi:10.3969/j.issn.1000-4440.2020.01.023]
MAO Xin-rui,LI Hao-cong,SHEN Zhi-hui,et al.Correlation analysis of mineral elements and sugar and acid contents in peach fruit[J].,2020,(04):164.[doi:doi:10.3969/j.issn.1000-4440.2020.01.023]
[7]程金金,吴世文,陈小龙,等.桃脆片加工过程中3种农药残留动态[J].江苏农业学报,2021,(02):517.[doi:doi:10.3969/j.issn.1000-4440.2021.02.030]
CHENG Jin-jin,WU Shi-wen,CHEN Xiao-long,et al.Dynamics of three pesticide residues during the processing of peach crisps[J].,2021,(04):517.[doi:doi:10.3969/j.issn.1000-4440.2021.02.030]
[8]张斌斌,陈星星,王娜,等.基于果实品质指标的不同桃品种近冰温贮藏特性比较[J].江苏农业学报,2021,(04):998.[doi:doi:10.3969/j.issn.1000-4440.2021.04.024]
ZHANG Bin-bin,CHEN Xing-xing,WANG Na,et al.Comparison of near-freezing temperature storage characteristics of different peach varieties based on fruit quality index[J].,2021,(04):998.[doi:doi:10.3969/j.issn.1000-4440.2021.04.024]
[9]徐子媛,严娟,蔡志翔,等.桃果实糖酸和酚类物质与口感风味的相关性[J].江苏农业学报,2022,38(01):190.[doi:doi:10.3969/j.issn.1000-4440.2022.01.023]
XU Zi-yuan,YAN Juan,CAI Zhi-xiang,et al.Correlation between soluble sugar, organic acid and phenolic substances with tasted flavor in peach fruit[J].,2022,38(04):190.[doi:doi:10.3969/j.issn.1000-4440.2022.01.023]
[10]张圆圆,刘文敬,张斌斌,等.桃内酯芳香物质合成相关的环氧化物水解酶候选基因的鉴别[J].江苏农业学报,2023,(01):178.[doi:doi:10.3969/j.issn.1000-4440.2023.01.021]
ZHANG Yuan-yuan,LIU Wen-jing,ZHANG Bin-bin,et al.Identification of candidate epoxide hydrolase genes involved in the biosynthesis of lactone volatile compounds in peach (Prunus persica L.)[J].,2023,(04):178.[doi:doi:10.3969/j.issn.1000-4440.2023.01.021]