参考文献/References:
[1]徐进,朱杰华,杨艳丽,等. 中国马铃薯病虫害发生情况与农药使用现状[J]. 中国农业科学,2019, 52(16): 2800-2808.
[2]JIANG G, WEI Z, XU J, et al. Bacterial wilt in China: History, current status, and future perspectives[J]. Frontiers in Plant Science, 2017, 8: 1549.
[3]ABDURAHMAN A, GRIFFIN D, ELPHINSTONE J, et al. Molecular characterization of Ralstonia solanacearum strains from Ethiopia and tracing potential source of bacterial wilt disease outbreak in seed potatoes[J]. Plant Pathology, 2017, 66(5): 826-834.
[4]王丽. 中国马铃薯青枯菌致病力和遗传多样性研究[D]. 武汉:华中农业大学, 2016.
[5]张长龄,何礼远,华静月,等. 马铃薯青枯病抗源筛选[J]. 世界农业. 1995(11): 36.
[6]陈卓,王俊杰,邹华芬,等. 广东冬作区抗青枯病马铃薯新品种筛选[J]. 中国马铃薯,2020, 34(6): 329-336.
[7]雷婷. 马铃薯青枯病抗性资源筛选与原生质体融合创制新种质[D]. 武汉:华中农业大学, 2011.
[8]黄勇. 马铃薯青枯病抗性资源的鉴定及效应蛋白突变体的筛选[D]. 武汉:华中农业大学, 2016.
[9]车建美,蓝江林,刘波. 转绿色荧光蛋白基因的青枯雷尔氏菌生物学特性[J]. 中国农业科学, 2008(11): 3626-3635.
[10]MONTEIRO F, GENIN S, VAN DIJK I, et al. A luminescent reporter evidences active expression of Ralstonia solanacearum type III secretion system genes throughout plant infection[J]. Microbiology,2012, 158(8): 2107-2116.
[11]张治飞. 青枯菌的基因标记及马铃薯青枯病抗性相关信号途径探究[D]. 武汉:华中农业大学, 2016.
[12]CRUZ A P Z, FERREIRA V, PIANZZOLA M J, et al. A novel, sensitive method to evaluate potato germplasm for bacterial wilt resistance using a luminescent Ralstonia solanacearum reporter strain[J]. Molecular Plant-Microbe Interactions,2014, 27(3): 277-285.
[13]WANG H, HU J, LU Y, et al. A quick and efficient hydroponic potato infection method for evaluating potato resistance and Ralstonia solanacearum virulence[J]. Plant Methods, 2019, 15:145.
[14]谢从华,柳俊,张克顺. 马铃薯块茎青枯病菌潜伏侵染的酶联免疫学检测[J]. 中国马铃薯,2000(3): 131-134.
[15]PRIOU S, SALAS C, DE MENDIBURU F, et al. Assessment of latent infection frequency in progeny tubers of advanced potato clones resistant to bacterial wilt: A new selection criterion[J]. Potato Research, 2001, 44: 359-373.
[16]何礼远. 抗青枯病高产优质马铃薯新品种“抗青9-1”[J]. 中国马铃薯, 2007(6): 381-382.
[17]田祚茂,膝建勋,王尔惠,等. CIP抗晚疫病、抗青枯病种质资源材料的筛选与评价[J]. 马铃薯杂志, 1995(4): 206-210.
[18]田祚茂,赵迎春,程群. 国外马铃薯种质资源的引进、筛选与利用[J]. 中国马铃薯,2001(4): 248-250.
[19]SIRI M I, SIRI M I, GALVN G A, et al. Molecular marker diversity and bacterial wilt resistance in wild Solanum commersonii accessions from Uruguay[J]. Euphytica,2009, 165(2): 371-382.
[20]JAWORSKI C W R G R. Relative resistance of potato cultivars to bacterial wilt[J]. Am Potato J, 1980(57): 159-164.
[21]THURSTON DH L J. Resistance to bacterial wilt of potatoes in Colombian clones of Solanum Phureja[J]. American Potato Journal, 1968,45: 51-55.
[22]FOCK I, COLLONNIER C, LUISETTI J, et al. Use of Solanum stenotomum for introduction of resistance to bacterial wilt in somatic hybrids of potato[J]. Plant Physiology and Biochemistry, 2001, 39(10): 899-908.
[23]李朋. 马铃薯体细胞杂种回交后代青枯病抗性鉴定及分子标记检测[D]. 武汉:华中农业大学, 2014.
[24]田祚茂,膝建勋,王尔惠,等. CIP抗晚疫病、抗青枯病种质资源材料的筛选与评价[J]. 马铃薯杂志,1995(4): 206-210.
[25]MICHEL V V, MEW T W. Effect of a soil amendment on the survival of Ralstonia solanacearum in different soils[J]. Phytopathology, 1998, 88(4): 300-305.
[26]MUTHONI J, SHIMELIS H, MELIS R. Conventional breeding of potatoes for resistance to bacterial wilt (Ralstonia solanacearum): Any light in the horizon?[J]. Australian Journal of Crop Science, 2020,14(3): 485-494.
[27]SPOONER D M, HIJMANS R J. Potato systematics and germplasm collecting, 1989-2000[J]. American Journal of Potato Research, 2001, 78(4): 237-268.
[28]CARPUTO D, AVERSANO R, BARONE A, et al. Resistance to Ralstonia solanacearum of sexual hybrids between Solanum commersonii and S. tuberosum[J]. American Journal of Potato Research,2009, 86(3): 196-202.
[29]TIWARI J K, DEVI S, ALI N, et al. Progress in somatic hybridization research in potato during the past 40 years[J]. Plant Cell, Tissue and Organ Culture (PCTOC), 2018, 132(2): 225-238.
[30]陈琳. 马铃薯体细胞杂种及其回交和自交后代遗传组分分析与青枯病抗性评价[D]. 武汉:华中农业大学, 2013.
[31]FOCK I I, COLLONNIER C, PURWITO A, et al. Resistance to bacterial wilt in somatic hybrids between Solanum tuberosum and Solanum phureja[J]. Plant Science,2000, 160(1): 165-176.
[32]LAFERRIERE L, HELGESON J, ALLEN C. Fertile Solanum tuberosum +S. commersoniisomatic hybrids as sources of resistance to bacterial wilt caused by Ralstonia solanacearum[J]. Theoretical and Applied Genetics ,1999(98): 1272-1278.
[33]FERREIRA V, PIANZZOLA M J, VILAR F L, et al. Interspecific potato breeding lines display differential colonization patterns and induced defense responses after Ralstonia solanacearum infection[J]. Frontiers in Plant Science, 2017, 8:1424.
[34]蔡兴奎. 原生质体融合创造抗青枯病的马铃薯新种质及其遗传分析[D]. 武汉:华中农业大学, 2004.
[35]汪晶. 二倍体马铃薯原生质体融合创制抗青枯病的新种质[D]. 武汉:华中农业大学, 2009.
[36]田伶俐. 马铃薯体细胞杂种胞质遗传组成及其与青枯病抗性的关系[D]. 武汉:华中农业大学, 2010.
[37]喻艳. 马铃薯与茄子原生质体融合创制新资源研究[D]. 武汉:华中农业大学, 2013.
[38]刘婷. 马铃薯-茄子体细胞杂种遗传组分分析及青枯病抗性评价[D]. 武汉:华中农业大学, 2015.
[39]王海波. 马铃薯+茄子体细胞杂种的基因组组分及其青枯病抗性的遗传基础[D]. 武汉:华中农业大学, 2020.
[40]PATIL V U, GOPAL J, SINGH B P. Improvement for bacterial wilt resistance in potato by conventional and biotechnological approaches[J]. Agricultural Research, 2012, 1(4): 299-316.
[41]贾士荣,屈贤铭,冯兰香,等. 转抗菌肽基因提高马铃薯对青枯病的抗性[J]. 中国农业科学, 1998,31(3): 5-12.
[42]梁远发,何礼远,冯兰香,等. 马铃薯抗青枯病转基因植株抗性鉴定[C]//中国作物学会马铃薯专业委员会.中国马铃薯学术研讨会与第五届世界马铃薯大会论文集.昆明:中国作物学会马铃薯专业委员会:2004:5.
[43]BOSCHI F, SCHVARTZMAN C, MURCHIO S, et al. Enhanced bacterial wilt resistance in potato through expression of arabidopsis EFR and introgression of quantitative resistance from Solanum commersonii[J]. Frontiers in Plant Science, 2017, 8:1642
[44]邢仪. 转NtLTP4基因抗盐抗旱抗病马铃薯新材料的培育[D]. 泰安:山东农业大学, 2019.
[45]CHANG Y, YU R, FENG J, et al. NAC transcription factor involves in regulating bacterial wilt resistance in potato[J]. Functional Plant Biology, 2020, 47(10): 925.
[46]何礼远. 马铃薯抗青枯病体细胞变异体离体筛选研究初报[J]. 中国马铃薯, 1990(1): 14-18.
[47]张永祥,华静月,何礼远,等. 马铃薯叶盘愈伤组织再生苗抗青枯病变异株的筛选[J]. 中国马铃薯,1993(1): 22-26.
[48]HABE I, MIYATAKE K, NUNOME T, et al. QTL analysis of resistance to bacterial wilt caused by Ralstonia solanacearum in potato[J]. Breeding Science, 2019, 69(4): 592-600.
[49]雷剑,柳俊. 一个与马铃薯青枯病抗性连锁的SRAP标记筛选[J]. 中国马铃薯,2006(3): 150-153.
[50]郜刚,金黎平,屈冬玉,等. 马铃薯青枯病抗性的共性AFLP标记的初步定位[J]. 西北植物学报,2005, 25(2): 269-274.
[51]李林章. 二倍体马铃薯青枯病抗性的分离及分子标记鉴定[D]. 武汉:华中农业大学, 2004.
[52]邵刚. 青枯菌诱导的马铃薯防卫相关基因克隆与表达[D]. 北京:中国农业科学院, 2008.
[53]VASSE J F P T A. Microscopic studies of intercellular infection and protoxylem invasion of tomato roots by Pseudomonas solanacearum[J]. Molecular Plant-Microbe Interaction,1995(8): 241-251.
[54]VAILLEAU F, SARTOREL E, JARDINAUD M F, et al. Characterization of the interaction between the bacterial wilt pathogen Ralstonia solanacearum and the model legume plant Medicago truncatula[J]. Mol Plant Microbe Interact,2007, 20(2): 159-167.
[55]DIGONNET C, MARTINEZ Y, DENANC N, et al. Deciphering the route of Ralstonia solanacearum colonization in Arabidopsis thaliana roots during a compatible interaction: focus at the plant cell wall[J]. Planta,2012, 236(5): 1419-1431.
[56]李广存. 马铃薯青枯病抗性相关基因的分离及其功能分析[D]. 北京:中国农业科学院, 2006.
[57]NARANCIO R, ZORRILLA P, ROBELLO C, et al. Insights on gene expression response of a characterized resistant genotype of Solanum commersonii Dun. against Ralstonia solanacearum[J]. European Journal of Plant Pathology, 2013, 136(4): 823-835.
[58]ZULUAGA A P, SOL M, LU H, et al. Transcriptome responses to Ralstonia solanacearum infection in the roots of the wild potato Solanum commersonii[J]. BMC Genomics, 2015, 16:246.
[59]KACHROO A, KACHROO P. Salicylic Acid-, Jasmonic acid- and ethylenemediated regulation of plant defense signaling[M]. Boston, MA:Springer US, 2007: 28, 55-83.
[60]MARTINEZ-FERRI E, ZUMAQUERO A, ARIZA M T, et al. Nondestructive detection of white root rot disease in avocado rootstocks by leaf chlorophyll fluorescence[J]. Plant Dis,2016, 100(1): 49-58.
[61]ROUSSEAU C, BELIN E, BOVE E, et al. High throughput quantitative phenotyping of plant resistance using chlorophyll fluorescence image analysis[J]. Plant Methods,2013, 9(1): 17.
[62]MAHLEIN A. Plant disease detection by imaging sensors-parallels and specific demands for precision agriculture and plant phenotyping[J]. Plant Disease, 2016, 100(2): 241-251.
[63]ATTA B M, SALEEM M, ALI H, et al. Chlorophyll as a biomarker for early disease diagnosis[J]. Laser Physics,2018, 28(6): 65607.
[64]KIM J H, BHANDARI S R, CHAE S Y, et al. Application of maximum quantum yield, a parameter of chlorophyll fluorescence, for early determination of bacterial wilt in tomato seedlings[J]. Horticulture, Environment, and Biotechnology,2019, 60(6): 821-829.
[65]CHEN T, YANG W, ZHANG H, et al. Early detection of bacterial wilt in peanut plants through leaf-level hyperspectral and unmanned aerial vehicle data[J]. Computers and Electronics in Agriculture, 2020, 177: 105708.
相似文献/References:
[1]何虎翼,谭冠宁,何新民,等.63 份马铃薯品种(系)资源农艺性状的主成分与聚类分析[J].江苏农业学报,2017,(01):27.[doi:10.3969/j.issn.1000-4440.2017.01.005
]
HE Hu-yi,TAN Guan-ning,HE Xin-min,et al.Principal component and cluster analysis for agronomic traits of 63 potato varieties or clones[J].,2017,(05):27.[doi:10.3969/j.issn.1000-4440.2017.01.005
]
[2]徐玉伟,印敬明,白潇,等.马铃薯 StPYL1 和 StPYL8 基因的分子克隆与表达分析[J].江苏农业学报,2015,(01):23.[doi:10.3969/j.issn.1000-4440.2015.01.004]
XU Yu-wei,YIN Jing-ming,BAI Xiao,et al.Molecular cloning and expression analysis of potato StPYL1 and StPYL8 genes[J].,2015,(05):23.[doi:10.3969/j.issn.1000-4440.2015.01.004]
[3]亢艳莉,申双和,张学艺,等.气候变化对宁夏南部山区马铃薯产量的影响及马铃薯水分供需特征分析[J].江苏农业学报,2017,(05):1056.[doi:doi:10.3969/j.issn.1000-4440.2017.05.015]
KANG Yan-li,SHEN Shuang-he,ZHANG Xue-yi,et al.Effect of climate change on potato yield of Ningxia southern mountainous area and analysis of characteristics of water supply and demand in potato[J].,2017,(05):1056.[doi:doi:10.3969/j.issn.1000-4440.2017.05.015]
[4]王卓卓,何英彬,罗善军,等.基于冠层高光谱数据与马氏距离的马铃薯品种识别[J].江苏农业学报,2018,(05):1036.[doi:doi:10.3969/j.issn.1000-4440.2018.05.010]
WANG Zhuo-zhuo,HE Ying-bin,LUO Shan-jun,et al.Variety identification of potatoes based on canopy hyperspectral data and Mahalanobis distance[J].,2018,(05):1036.[doi:doi:10.3969/j.issn.1000-4440.2018.05.010]
[5]许伟栋,赵忠盖.基于卷积神经网络和支持向量机算法的马铃薯表面缺陷检测[J].江苏农业学报,2018,(06):1378.[doi:doi:10.3969/j.issn.1000-4440.2018.06.025]
XU Wei-dong,ZHAO Zhong-gai.Potato surface defects detection based on convolution neural networks and support vector machine algorithm[J].,2018,(05):1378.[doi:doi:10.3969/j.issn.1000-4440.2018.06.025]
[6]黄强,郑顺林,郭函,等.氮增效剂对马铃薯叶片及土壤氮的影响[J].江苏农业学报,2019,(05):1087.[doi:doi:10.3969/j.issn.1000-4440.2019.05.013]
HUANG Qiang,ZHENG Shun-lin,GUO Han,et al.Effects of nitrogen synergist on nitrogen in potato leaves and soil[J].,2019,(05):1087.[doi:doi:10.3969/j.issn.1000-4440.2019.05.013]
[7]许建民,颜志明,史培华,等.不同光谱及其组合对马铃薯干物质积累和分配的影响[J].江苏农业学报,2020,(01):32.[doi:doi:10.3969/j.issn.1000-4440.2020.01.005]
XU Jian-min,YAN Zhi-ming,SHI Pei-hua,et al.Effects of different spectra and their combinations on dry matter accumulation and distribution in potato[J].,2020,(05):32.[doi:doi:10.3969/j.issn.1000-4440.2020.01.005]
[8]许建民,刘艳,颜志明,等.不同光谱对马铃薯种薯品质的影响[J].江苏农业学报,2020,(05):1105.[doi:doi:10.3969/j.issn.1000-4440.2020.05.005]
XU Jian-min,LIU Yan,YAN Zhi-ming,et al.Effects of different spectra on quality of seed potato[J].,2020,(05):1105.[doi:doi:10.3969/j.issn.1000-4440.2020.05.005]
[9]杨茜,刘吉利,贺锦红,等.栽培模式对宁南地区马铃薯生理特性及产量的影响[J].江苏农业学报,2021,(03):555.[doi:doi:10.3969/j.issn.1000-4440.2021.03.002]
YANG Qian,LIU Ji-li,HE Jin-hong,et al.Effects of cultivation pattern on physiological characteristics and yield of potatoes planted in southern Ningxia[J].,2021,(05):555.[doi:doi:10.3969/j.issn.1000-4440.2021.03.002]
[10]安珍,张茹艳,周春涛,等.铁肥对马铃薯生理特性、产量及品质的影响[J].江苏农业学报,2022,38(04):931.[doi:doi:10.3969/j.issn.1000-4440.2022.04.009]
AN Zhen,ZHANG Ru-yan,ZHOU Chun-tao,et al.Effects of iron fertilizer on physiological characteristics, yield and quality of potato[J].,2022,38(05):931.[doi:doi:10.3969/j.issn.1000-4440.2022.04.009]