参考文献/References:
[1]梁菲菲. 密码子偏性的影响因素及研究意义[J]. 畜牧与饲料科学,2010,31(1):118-119.
[2]HERSHBERG R, PETROV D A. Selection on codon bias[J]. Annual Review of Genetics,2008,42:287-299.
[3]PLOTKIN J B, KUDLA G. Synonymous but not the same:the causes and consequences of codon bias[J]. Nature Reviews Genetics,2011,12(1):32-42.
[4]LIU X Y, LI Y, JI K K, et al. Genome-wide codon usage pattern analysis reveals the correlation between codon usage bias and gene expression in Cuscuta australis[J]. Genomics,2020,112(4):2695-2702.
[5]PARVATHY S T, UDAYASURIYAN V, BHADANA V. Codon usage bias[J]. Molecular Biology Reports,2022,49(1):539-565.
[6]孙彬妹,刘少群,刘任坚,等. 茶树茸毛的研究进展[J]. 茶叶通讯,2018,45(4):3-6.
[7]STRATMANN J W, BEQUETTE C J. Hairless but no longer clueless:understanding glandular trichome development[J]. Journal of Experimental Botany,2016,67(18):5285-5287.
[8]HAUSER M T. Molecular basis of natural variation and environmental control of trichome patterning[J]. Frontiers in Plant Science,2014,5:320.
[9]BANDYOPADHYAY T, GOHAIN B, BHARALEE R, et al. Molecular landscape of Helopeltis theivora induced transcriptome and defense gene expression in tea[J]. Plant Molecular Biology Reporter,2015,33(4):1042-1057.
[10]宋亚康,张群峰,张洁,等. 茶毫氨基酸组成及矿质元素分析[J]. 茶叶科学,2017,37(4):339-346.
[11]郭桂义,孙慕芳,陈义,等. 茶叶茸毛的化学成分测定[J]. 食品科学,2011,32(8):244-247.
[12]LIU X Y, ZHOU F, WEN M C, et al. LC-MS and GC-MS based metabolomics analysis revealed the impact of tea trichomes on the chemical and flavor characteristics of white tea[J]. Food Research International,2024,191:114740.
[13]LONG P P, SU S X, WEN M C, et al. An insight into trichomes-deficiency and trichomes-rich black teas by comparative metabolomics:the impact of oxidized trichomes on metabolic profiles and infusion color[J]. Food Research International,2024,190:114638.
[14]LYU Z Y, LI J X, QIU S, et al. The transcription factors TLR1 and TLR2 negatively regulate trichome density and artemisinin levels in Artemisia annua[J]. Journal of Integrative Plant Biology,2022,64(6):1212-1228.
[15]DONG B R, XU Z H, WANG X X, et al. TrichomeLess regulator 3 is required for trichome initial and cuticle biosynthesis in Artemisia annua[J]. Molecular Horticulture,2024,4(1):10.
[16]LIU Y J, HOU H, JIANG X L, et al. A WD40 repeat protein from Camellia sinensis regulates anthocyanin and proanthocyanidin accumulation through the formation of MYB-bHLH-WD40 ternary complexes[J]. International Journal of Molecular Sciences,2018,19(6):1686.
[17]SUN B M, ZHU Z S, LIU R J, et al. TRANSPARENT TESTA GLABRA1 (TTG1) regulates leaf trichome density in tea Camellia sinensis[J]. Nordic Journal of Botany,2020,38(1):38.
[18] LI P H, FU J M, XU Y J, et al. CsMYB1 integrates the regulation of trichome development and catechins biosynthesis in tea plant domestication[J]. New Phytologist,2022,234(3):902-917.
[19]刘任坚,王玉源,刘少群,等. 茶树CsbHLH024和CsbHLH133转录因子功能鉴定[J]. 茶叶科学,2022,42(3):347-357.
[20]LIU X E. A more accurate relationship between ‘effective number of condons’ and GC3s under assumptions of no selection[J]. Computational Biology and Chemistry,2013,42:35-39.
[21]SUEOKA N. Near homogeneity of PR2-bias fingerprints in the human genome and their implications in phylogenetic analyses[J]. Journal of Molecular Evolution,2001,53(4/5):469-476.
[22]WRIGHT F. The ‘effective number of condons’ used in a gene[J]. Gene,1990,87(1):23-29.
[23]杨国锋,苏昆龙,赵怡然,等. 蒺藜苜蓿叶绿体密码子偏好性分析[J]. 草业学报,2015,24(12):171-179.
[24]胡莎莎,罗洪,吴琦,等. 苦荞叶绿体基因组密码子偏爱性分析[J]. 分子植物育种,2016,14(2):309-317.
[25]时慧,王玉,杨路成,等. 茶树抗寒调控转录因子ICE1密码子偏性分析[J]. 园艺学报,2012,39(7):1341-1352.
[26]赵洋,刘振,杨培迪,等. 密码子偏性分析方法及茶树中密码子偏性研究进展[J]. 茶叶通讯,2016,43(2):3-7.
[27]SHARP P M, LI W H. The condon adaptation index:a measure of directional synonymous condon usage bias,and its potential applications[J]. Nucleic Acids Research,1987,15(3):1281-1295.
[28]DURET L. tRNA gene number and condon usage in the C. elegans genome are co-adapted for optimal translation of highly expressed genes[J]. Trends in Genetics,2000,16(7):287-289.
[29]张文娟. 基于密码子水平的生物信息学分析及进化研究[D]. 上海:复旦大学,2006.
[30]严子成,蒋瑞平,梁浩伟,等. 川芎咖啡酸-O-甲基转移酶基因密码子偏好性与进化分析[J]. 应用与环境生物学报,2020,26(4):894-901.
[31]巫伟峰,陈明杰,陈发兴. ‘皇冠李’苹果酸转运体基因ALMT4、ALMT9和tDT密码子偏好性分析[J]. 农业生物技术学报,2020,28(1):42-57.
[32]BULMER M. The selection-mutation-drift theory of synonymous codon usage[J]. Genetics,1991,129(3):897-907.
[33]赵洋,杨阳,刘振,等. 茶树密码子用法分析[J]. 茶叶科学,2011,31(4):319-325.
[34]MUKHOPADHYAY P, BASAK S, GHOSH T C. Differential selective constraints shaping codon usage pattern of housekeeping and tissue-specific homologous genes of rice and Arabidopsis[J]. DNA Research,2008,15(6):347-356.
[35]ROMERO H, ZAVALA A, MUSTO H. Codon usage in Chlamydia trachomatis is the result of strand-specific mutational biases and a complex pattern of selective forces[J]. Nucleic Acids Research,2000,28(10):2084-2090.
[36]GU W J, ZHOU T, MA J M, et al. The relationship between synonymous codon usage and protein structure in Escherichia coli and Homo sapiens[J]. Biosystems,2004,73(2):89-97.
[37]谭淳月,刘勇,赖章凤,等. 茶树氧甲基转移酶基因密码子偏好性分析[J]. 江西农业大学学报,2023,45(3):652-662.
[38]PAN L L, WANG Y, HU J H, et al. Analysis of codon use features of stearoyl-acyl carrier protein desaturase gene in Camellia sinensis[J]. Journal of Theoretical Biology,2013,334:80-86.
[39]LI C, PAN L L, WANG Y, et al. Codon bias of the gene for chloroplast glycerol-3-phosphate acyltransferase in Camellia sinensis (L.) O. Kuntze[J]. Biochemical Systematics and Ecology,2014,55:212-218.
[40]周子维,常笑君,游芳宁,等. 茶树脂肪氧合酶(LOX)基因家族成员的分子进化及密码子偏好性分析[J]. 中国农业科技导报,2017,19(12):43-51.
[41]王占军,吴子琦,王朝霞,等. 3个茶树品种WOX基因家族的进化及密码子偏好性比较[J]. 南京林业大学学报(自然科学版),2022,46(2):71-80.
[42]YOU E, WANG Y, DING Z T, et al. Codon usage bias analysis for the spermidine synthase gene from Camellia sinensis (L.) O. Kuntze[J]. Genetics and Molecular Research,2015,14(3):7368-7376.
[43]胡振民,万青,李欢,等. 茶树CsNRT1.1基因密码子使用特性分析[J]. 江苏农业学报,2019,35(4):896-903.
[44]赵洋,刘振,杨培迪,等. 茶树CsActin1基因密码子偏性分析[J]. 茶叶通讯,2014,41(4):13-17.
[45]郭秀丽,王玉,杨路成,等. 茶树CBF1基因密码子使用特性分析[J]. 遗传,2012,34(12):1614-1623.
[46]原晓龙,郝佳波,王毅,等. 铁核桃叶绿体基因组密码子偏好性分析[J]. 分子植物育种,2020,18(20):6671-6677.
[47]陈何,王晓,王乐,等. 苋菜AtrNiR基因密码子偏好性与进化分析[J]. 亚热带农业研究,2021,17(1):48-56.
[48]佟岩,黄荟,王雨华. 森林茶园古茶树大理茶叶绿体基因组密码子偏好性及系统发育研究[J]. 茶叶科学,2023,43(3):297-309.
[49]高灿,樊智丰,马长乐. 黄药大头茶叶绿体基因组密码子偏好性分析[J]. 西南林业大学学报(自然科学),2023,43(5):66-76.
[50]冯琛,张云婷,肖婕,等. 黑莓RuTT12-1基因密码子偏好性分析[J]. 基因组学与应用生物学,2016,35(8):2133-2144.
[51]CHRISTIANSON M L. Codon usage patterns distort phylogenies from or of DNA sequences[J]. American Journal of Botany,2005,92(8):1221-1233.
[52]ZHOU H, WANG H, HUANG L F, et al. Heterogeneity in codon usages of sobemovirus genes[J]. Archives of Virology,2005,150(8):1591-1605.
相似文献/References:
[1]李春雷.氟对茶树抗坏血酸?谷胱甘肽循环系统的影响[J].江苏农业学报,2016,(05):1018.[doi:10.3969/j.issn.1000-4440.2016.05.010]
LI Chun-lei.ASA-GSH cycle in tea plant exposed to fluoride application[J].,2016,(05):1018.[doi:10.3969/j.issn.1000-4440.2016.05.010]
[2]李春雷,倪德江.氟对幼龄茶树叶绿素含量及抗氧化酶活性的影响[J].江苏农业学报,2015,(05):1149.[doi:doi:10.3969/j.issn.1000-4440.2015.05.032]
LI Chun-lei,NI De-jiang.Chlorophyll content and antioxidation of young tea plant exposed to fluoride[J].,2015,(05):1149.[doi:doi:10.3969/j.issn.1000-4440.2015.05.032]
[3]陈春林,田易萍,陈林波,等.基于荧光标记的紫娟茶树转录组EST-SSR标记开发[J].江苏农业学报,2018,(04):747.[doi:doi:10.3969/j.issn.1000-4440.2018.04.005]
CHEN Chun-lin,TIAN Yi-ping,CHEN Lin-bo,et al.EST-SSR marker development of Zijuan tea tree transcriptome based on the fluorescent labeling[J].,2018,(05):747.[doi:doi:10.3969/j.issn.1000-4440.2018.04.005]
[4]胡振民,万青,李欢,等.茶树CsNRT1.1基因密码子使用特性分析[J].江苏农业学报,2019,(04):896.[doi:doi:10.3969/j.issn.1000-4440.2019.04.021]
HU Zhen min,WAN Qing,LI Huan,et al.Analysis of codon usage features of CsNRT1.1 gene in Camellia sinensis[J].,2019,(05):896.[doi:doi:10.3969/j.issn.1000-4440.2019.04.021]
[5]王治会,岳翠男,李琛,等.江西省茶树种质化学特性多样性分析与鉴定评价[J].江苏农业学报,2020,(01):172.[doi:doi:10.3969/j.issn.1000-4440.2020.01.024]
WANG Zhi-hui,YUE Cui-nan,LI Chen,et al.Diversity analysis and evaluation of chemical characteristics of tea germplasms in Jiangxi province[J].,2020,(05):172.[doi:doi:10.3969/j.issn.1000-4440.2020.01.024]
[6]赵洋,刘振,杨培迪,等.黄金茶种质资源生化成分的多样性分析[J].江苏农业学报,2021,(05):1285.[doi:doi:10.3969/j.issn.1000-4440.2021.05.025]
ZHAO Yang,LIU Zhen,YANG Pei-di,et al.Diversity analysis of biochemical components in Huangjincha (Camellia sinensis) germplasm resources[J].,2021,(05):1285.[doi:doi:10.3969/j.issn.1000-4440.2021.05.025]
[7]邰玉玲,杨林,王欢欢,等.茶特征成分合成相关新转录因子鉴定[J].江苏农业学报,2021,(06):1534.[doi:doi:10.3969/j.issn.1000-4440.2021.05.023]
TAI Yu-ling,YANG Lin,WANG Huan-huan,et al.Identification of new transcription factors related to the synthesis of characteristic components in tea[J].,2021,(05):1534.[doi:doi:10.3969/j.issn.1000-4440.2021.05.023]
[8]黄双杰,曹梦珍,陈凌芝,等.氮素胁迫条件下茶树根系发育及生长素的响应[J].江苏农业学报,2023,(03):814.[doi:doi:10.3969/j.issn.1000-4440.2023.03.023]
HUANG Shuang-jie,CAO Meng-zhen,CHEN Ling-zhi,et al.Auxin response and tea plant roots formation regulated by nitrogen stress[J].,2023,(05):814.[doi:doi:10.3969/j.issn.1000-4440.2023.03.023]
[9]刘悦,曲浩,田易萍,等.转录组测序分析外源水杨酸诱导茶树热激蛋白基因的响应[J].江苏农业学报,2024,(04):607.[doi:doi:10.3969/j.issn.1000-4440.2024.04.004]
LIU Yue,QU Hao,TIAN Yi-ping,et al.Transcriptome analysis of the response of heat shock protein encoding genes induced by salicylic acid in tea plants[J].,2024,(05):607.[doi:doi:10.3969/j.issn.1000-4440.2024.04.004]
[10]刘财国,吕水源,于文涛,等.北苑贡茶茶树种质遗传多样性及其与青心乌龙茶树的亲缘关系[J].江苏农业学报,2024,(05):935.[doi:doi:10.3969/j.issn.1000-4440.2024.05.018]
LIU Caiguo,LYU Shuiyuan,YU Wentao,et al.Genetic diversity of Beiyuan tribute tea germplasms and their genetic relationship with Qingxinwulong[J].,2024,(05):935.[doi:doi:10.3969/j.issn.1000-4440.2024.05.018]