参考文献/References:
[1]VLOT A C, DEMPSEY D A, KLESSIG D F. Salicylic acid, a multifaceted hormone to combat disease [J]. Annual Review of Phytopathology,2009,47:177-206.
[2]RIVAS-SAN VICENTE M, PLASENCIA J. Salicylic acid beyond defence: its role in plant growth and development [J]. Journal of Experimental Botany,2011,62(10):3321-3338.
[3]DING Y L, SUN T J, AO K V, et al. Opposite roles of salicylic acid receptors NPR1 and NPR3/NPR4 in transcriptional regulation of plant immunity [J]. Cell,2018,173(6):1454-1467.
[4]WANG F J, TAN H F, HUANG L H, et al. Application of exogenous salicylic acid reduces Cd toxicity and Cd accumulation in rice [J]. Ecotoxicology and Environmental Safety,2021,207:111198.
[5]NAGASHIMA Y, IWATA Y, ASHIDA M, et al. Exogenous salicylic acid activates two signaling arms of the unfolded protein response in Arabidopsis[J]. Plant and Cell Physiology,2014,55(10):1772-1778.
[6]FU Z Q, YAN S, SALEH A, et al. NPR3 and NPR4 are receptors for the immune signal salicylic acid in plants [J]. Nature,2012,486:228-232.
[7]SHI Y L, SHENG Y Y, CAI Z Y, et al. Involvement of salicylic acid in anthracnose infection in tea plants revealed by transcriptome profiling[J]. International Journal Molecular Sciences,2019,20(10):2439.
[8]王云锋,王春梅,王长秘,等. 外源水杨酸对稻瘟病菌效应蛋白BAS4过表达菌株耐受性的影响[J]. 南方农业学报,2017,48(12):2169-2175.
[9]LI X F, RIAZ M, SONG B Q, et al. Exogenous salicylic acid alleviates fomesafen toxicity by improving photosynthetic characteristics and antioxidant defense system in sugar beet[J]. Ecotoxicology and Environment Safety,2022,238:113587.
[10]WASSIE M, ZHANG W, ZHANG Q, et al. Exogenous salicylic acid ameliorates heat stress-induced damages and improves growth and photosynthetic efficiency in alfalfa (Medicago sativa L.)[J]. Ecotoxicology and Environment Safety,2020,191:110206.
[11]MAZZONI-PUTMAN S M, BRUMOS J, ZHAO C, et al. Auxin interactions with other hormones in plant development[J]. Cold Spring Harb Perspect Biol,2021,13(10):a039990.
[12]ZHUANG L L, CAO W, WANG J, et al. Characterization and functional analysis of fahsfc1b from festuca arundinacea conferring heat tolerance in Arabidopsis[J]. International Journal Molecular Sciences,2018,19(9):2702.
[13]WEI Y X, ZHU B B, LIU W, et al. Heat shock protein 90 co-chaperone modules fine-tune the antagonistic interaction between salicylic acid and auxin biosynthesis in cassava[J]. Cell Reports,2021,34(5):108717.
[14]DODDS P N, RATHJEN J P. Plant immunity: towards an integrated view of plant-pathogen interactions[J]. Nature Reviews Genetics,2010,11:539-548.
[15]YOGENDRA K N, KUMAR A, SARKAR K, et al. Transcription factor StWRKY1 regulates phenylpropanoid metabolites conferring late blight resistance in potato[J]. Journal of Experimental Botany,2015,66(22):7377-7389.
[16]UL HAQ S, KHAN A, ALI M, et al. Heat shock proteins: dynamic biomolecules to counter plant biotic and abiotic stresses[J]. International Journal Molecular Sciences,2019,20(21):5321.
[17]BACKER R, MAHOMED W, REEKSTING B J, et al. Phylogenetic and expression analysis of the NPR1-like gene family from Persea americana (Mill.) [J]. Frontiers in Plant Science,2015,29,6:300.
[18]FU Z Q, DONG X. Systemic acquired resistance: turning local infection into global defense[J]. Annual Review of Plant Biology,2013,64:839-863.
[19]VAN BUTSELAAR T, VAN DEN A G. Salicylic acid steers the growth-immunity tradeoff [J]. Trends in Plant Science,2020,25(6):566-576.
[20]CASTELL M J, MEDINA-PUCHE L, LAMILLA J, et al. NPR1 paralogs of Arabidopsis and their role in salicylic acid perception[J]. PLoS One,2018,13(12):e0209835.
[21]MANOHAR M, TIAN M, MOREAU M, et al. Identification of multiple salicylic acid-binding proteins using two high throughput screens[J]. Frontiers in Plant Science,2015,5:777.
[22]WANG X, YAN Y, LI Y, et al. GhWRKY40, a multiple stress-responsive cotton WRKY gene, plays an important role in the wounding response and enhances susceptibility to ralstonia solanacearum infection in transgenic Nicotiana benthamiana[J]. PLoS One,2014,9(4):e93577.
[23]CHEN J, MOHAN R, ZHANG Y Q, et al. NPR1 promotes its own and target gene expression in plant defense by recruiting CDK8[J]. Plant Physiology,2019,181(1):289-304.
[24]WARMERDAM S, STERKEN M G, SUKARTA O C A, et al. The TIR-NB-LRR pair DSC1 and WRKY19 contributes to basal immunity of Arabidopsis to the root-knot nematode Meloidogyne incognita[J]. BMC Plant Biology,2020,20(1):73.
[25]GOROVITS R, CZOSNEK H. The involvement of heat shock proteins in the establishment of tomato yellow leaf curl virus infection[J]. Frontiers in Plant Science,2017,8:355.
[26]SARKAR N K, KIM Y K, GROVER A. Rice sHsp genes: genomic organization and expression profiling under stress and development[J]. BMC Genomics,2009,10:393.
[27]VAN O G, LUKASIK E, VAN DEN BURG HARROLD A, et al. The small heat shock protein 20 RSI2 interacts with and is required for stability and function of tomato resistance protein I-2 [J]. The Plant Journal,2010,63(4):563-572.
[28]PAN X, ZHU B, LUO Y, et al. Unraveling the protein network of tomato fruit in response to necrotrophic phytopathogenic Rhizopus nigricans[J]. PLoS One,2013,8(9):e73034.
[29]ZHANG H, HUANG Q, YI L, et al. PAL-mediated SA biosynthesis pathway contributes to nematode resistance in wheat[J]. The Plant Journal,2021,107(3):698-712.
[30]冉隆珣,肖星,殷丽琼,等. 水杨酸和茉莉酸诱导茶树抗茶饼病研究初报[J]. 陕西农业科学,2022,68(4):32-35.
相似文献/References:
[1]李春雷.氟对茶树抗坏血酸?谷胱甘肽循环系统的影响[J].江苏农业学报,2016,(05):1018.[doi:10.3969/j.issn.1000-4440.2016.05.010]
LI Chun-lei.ASA-GSH cycle in tea plant exposed to fluoride application[J].,2016,(04):1018.[doi:10.3969/j.issn.1000-4440.2016.05.010]
[2]李春雷,倪德江.氟对幼龄茶树叶绿素含量及抗氧化酶活性的影响[J].江苏农业学报,2015,(05):1149.[doi:doi:10.3969/j.issn.1000-4440.2015.05.032]
LI Chun-lei,NI De-jiang.Chlorophyll content and antioxidation of young tea plant exposed to fluoride[J].,2015,(04):1149.[doi:doi:10.3969/j.issn.1000-4440.2015.05.032]
[3]陈春林,田易萍,陈林波,等.基于荧光标记的紫娟茶树转录组EST-SSR标记开发[J].江苏农业学报,2018,(04):747.[doi:doi:10.3969/j.issn.1000-4440.2018.04.005]
CHEN Chun-lin,TIAN Yi-ping,CHEN Lin-bo,et al.EST-SSR marker development of Zijuan tea tree transcriptome based on the fluorescent labeling[J].,2018,(04):747.[doi:doi:10.3969/j.issn.1000-4440.2018.04.005]
[4]胡振民,万青,李欢,等.茶树CsNRT1.1基因密码子使用特性分析[J].江苏农业学报,2019,(04):896.[doi:doi:10.3969/j.issn.1000-4440.2019.04.021]
HU Zhen min,WAN Qing,LI Huan,et al.Analysis of codon usage features of CsNRT1.1 gene in Camellia sinensis[J].,2019,(04):896.[doi:doi:10.3969/j.issn.1000-4440.2019.04.021]
[5]王治会,岳翠男,李琛,等.江西省茶树种质化学特性多样性分析与鉴定评价[J].江苏农业学报,2020,(01):172.[doi:doi:10.3969/j.issn.1000-4440.2020.01.024]
WANG Zhi-hui,YUE Cui-nan,LI Chen,et al.Diversity analysis and evaluation of chemical characteristics of tea germplasms in Jiangxi province[J].,2020,(04):172.[doi:doi:10.3969/j.issn.1000-4440.2020.01.024]
[6]赵洋,刘振,杨培迪,等.黄金茶种质资源生化成分的多样性分析[J].江苏农业学报,2021,(05):1285.[doi:doi:10.3969/j.issn.1000-4440.2021.05.025]
ZHAO Yang,LIU Zhen,YANG Pei-di,et al.Diversity analysis of biochemical components in Huangjincha (Camellia sinensis) germplasm resources[J].,2021,(04):1285.[doi:doi:10.3969/j.issn.1000-4440.2021.05.025]
[7]邰玉玲,杨林,王欢欢,等.茶特征成分合成相关新转录因子鉴定[J].江苏农业学报,2021,(06):1534.[doi:doi:10.3969/j.issn.1000-4440.2021.05.023]
TAI Yu-ling,YANG Lin,WANG Huan-huan,et al.Identification of new transcription factors related to the synthesis of characteristic components in tea[J].,2021,(04):1534.[doi:doi:10.3969/j.issn.1000-4440.2021.05.023]
[8]黄双杰,曹梦珍,陈凌芝,等.氮素胁迫条件下茶树根系发育及生长素的响应[J].江苏农业学报,2023,(03):814.[doi:doi:10.3969/j.issn.1000-4440.2023.03.023]
HUANG Shuang-jie,CAO Meng-zhen,CHEN Ling-zhi,et al.Auxin response and tea plant roots formation regulated by nitrogen stress[J].,2023,(04):814.[doi:doi:10.3969/j.issn.1000-4440.2023.03.023]
[9]刘财国,吕水源,于文涛,等.北苑贡茶茶树种质遗传多样性及其与青心乌龙茶树的亲缘关系[J].江苏农业学报,2024,(05):935.[doi:doi:10.3969/j.issn.1000-4440.2024.05.018]
LIU Caiguo,LYU Shuiyuan,YU Wentao,et al.Genetic diversity of Beiyuan tribute tea germplasms and their genetic relationship with Qingxinwulong[J].,2024,(04):935.[doi:doi:10.3969/j.issn.1000-4440.2024.05.018]