参考文献/References:
[1]LIANG Y F, MA F, LI B Y, et al. A bHLH transcription factor, SlbHLH96, promotes drought tolerance in tomato[J]. Horticulture Research, 2022, 9: 198.
[2]LIANG B B, WAN S G, MA Q L, et al. A novel bHLH transcription factor PtrbHLH66 from trifoliate orange positively regulates plant drought tolerance by mediating root growth and ROS scavenging[J]. International Journal of Molecular Sciences, 2022, 23(23): 15053.
[3]WANG X P, NIU Y L, ZHENG Y. Multiple functions of MYB transcription factors in abiotic stress responses[J]. International Journal of Molecular Sciences, 2021, 22(11): 6125.
[4]LIU Y J, JI X Y, NIE X G, et al. Arabidopsis AtbHLH112 regulates the expression of genes involved in abiotic stress tolerance by binding to their E-box and GCG-box motifs[J]. The New Phytologist, 2015, 207(3): 692-709.
[5]JOO H, BAEK W, LIM C W, et al. Post-translational modifications of bZIP transcription factors in abscisic acid signaling and drought responses[J]. Current Genomics, 2021, 22(1): 4-15.
[6]KHOSO M A, HUSSAIN A, RITONGA F N, et al. WRKY transcription factors (TFs): molecular switches to regulate drought, temperature, and salinity stresses in plants[J]. Frontiers in Plant Science, 2022, 13: 1039329.
[7]DEBBARMA J, SARKI Y N, SAIKIA B, et al. Ethylene response factor (ERF) family proteins in abiotic stresses and CRISPR-Cas9 genome editing of ERFs for multiple abiotic stress tolerance in crop plants: a review[J]. Molecular Biotechnology, 2019, 61(2): 153-172.
[8]BABITHA K C, RAMU S V, PRUTHVI V, et al. Co-expression of AtbHLH17 and AtWRKY28 confers resistance to abiotic stress in Arabidopsis[J]. Transgenic Research, 2013, 22(2): 327-341.
[9]LIU W W, TAI H H, LI SS, et al. bHLH122 is important for drought and osmotic stress resistance in Arabidopsis and in the repression of ABA catabolism[J]. The New phytologist, 2014, 201(4): 1192-1204.
[10]WANG F B, ZHU H, KONG W L, et al. The Antirrhinum AmDEL gene enhances flavonoids accumulation and salt and drought tolerance in transgenic Arabidopsis[J]. Planta, 2016, 244(1): 59-73.
[11]QIU J R, HUANG Z, XIANG X Y, et al. MfbHLH38, a Myrothamnus flabellifolia bHLH transcription factor, confers tolerance to drought and salinity stresses in Arabidopsis[J]. BMC Plant Biology, 2020, 20(1): 542.
[12]刘福,陈诚,张凯旋,等. 日本百脉根LjbHLH34基因克隆及耐旱功能鉴定[J]. 草业学报, 2023, 32(1): 178-191.
[13]VALLIYODAN B, YE H, SONG L, et al. Genetic diversity and genomic strategies for improving drought and waterlogging tolerance in soybeans[J]. Journal of Experimental Botany, 2017, 68(8): 1835-1849.
[14]李文滨,宋春晓,苌兴超,等.干旱胁迫下20个大豆品种抗旱性评价[J].东北农业大学学报, 2019, 50(4): 1-10.
[15]XU Z L, LIU X Q, HE X L, et al. The soybean basic Helix-Loop-Helix transcription factor ORG3-like enhances cadmium tolerance via increased iron and reduced cadmium uptake and transport from roots to shoots[J]. Frontiers in Plant Science, 2017, 8:1098.
[16]CHENG Q, DONG L D, GAO T J, et al. The bHLH transcription factor GmPIB1 facilitates resistance to Phytophthora sojae in Glycine max[J]. Journal of Experimental Botany, 2018, 69(10): 2527-2541.
[17]LI L, GAO W W, PENG Q, et al. Two soybean bHLH factors regulate response to iron deficiency[J]. Journal of Integrative Plant Biology, 2018, 60(7): 608-622.
[18]KU Y S, NI M, MUNOZ N B, et al. ABAS1 from soybean is a 1R-subtype MYB transcriptional repressor that enhances ABA sensitivity[J]. Journal of Experimental Botany, 2020, 71(10): 2970-2981.
[19]唐佳佳,万云宝,王茂林.甘蓝型油菜BnbHLH122基因的克隆、表达模式及胁迫响应分析[J]. 四川大学学报(自然科学版), 2021, 58(2): 180-188.
[20]沈方圆,王岚春,李校. 欧洲山杨bHLH转录因子家族全基因组分析[J]. 四川大学学报(自然科学版), 2021, 58(3): 179-187.
[21]CHEN Y, ZHU P P, WU S Y. Identification and expression analysis of GRAS transcription factors in the wild relative of sweet potato Ipomoea trifida[J]. BMC Genomics, 2019, 20(1): 911.
[22]LI P, ZHANG B, SU T, et al. BrLAS, a GRAS transcription factor from Brassica rapa, is involved in drought stress tolerance in transgenic Arabidopsis[J]. Frontiers in Plant Science, 2018, 9:1792.UV-B辐射对不同品种(品系)辣椒幼苗光合特性及UVR8表达的影响陈艳1,2,邓昌蓉1,2,3,侯全刚1,2,3,文军琴1,2,3,刘敏1,2,邵登魁1,2,3(1.青海大学农林科学院,青海西宁810016;2.青海省蔬菜遗传与生理重点实验室,青海西宁810016;3.青藏高原种质资源研究与利用实验室,青海西宁810016)
相似文献/References:
[1]刘朝茂,李成云.玉米与大豆间作对玉米叶片衰老的影响[J].江苏农业学报,2017,(02):322.[doi:doi:10.3969/j.issn.1000-4440.2017.02.013]
LIU Chao-mao,LI Cheng-yun.Effects of maize/soybean intercropping on maize leaf senescence[J].,2017,(07):322.[doi:doi:10.3969/j.issn.1000-4440.2017.02.013]
[2]张令瑄,谢婷婷,王瑾,等.大田条件下UV-B 辐射增强对大豆根际土壤相关指标的影响[J].江苏农业学报,2016,(01):118.[doi:10.3969/j.issn.1000-4440.2016.01.018]
ZHANG Ling-xuan,XIE Ting-ting,WANG Jin,et al.Soybean rhizosphere soil parameters in response to enhanced UV-B radiation under field condition[J].,2016,(07):118.[doi:10.3969/j.issn.1000-4440.2016.01.018]
[3]宁丽华,何晓兰,张大勇.大豆耐盐相关基因GmNcl1功能标记的开发及验证[J].江苏农业学报,2017,(06):1227.[doi:doi:10.3969/j.issn.1000-4440.2017.06.005]
NING Li-hua,HE Xiao-lan,ZHANG Da-yong.Development and validation of the function marker of soybean salt tolerance gene GmNcl1[J].,2017,(07):1227.[doi:doi:10.3969/j.issn.1000-4440.2017.06.005]
[4]杨艳丽,杨勇,李大红,等.转桃PpCuZnSOD基因大豆的耐旱性[J].江苏农业学报,2018,(05):978.[doi:doi:10.3969/j.issn.1000-4440.2018.05.003]
YANG Yan-li,YANG Yong,LI Da-hong,et al.Drought tolerance of transgenic soybean with PpCuZnSOD gene[J].,2018,(07):978.[doi:doi:10.3969/j.issn.1000-4440.2018.05.003]
[5]孙彦坤,陈睿,李静,等.不同降雨年型下反枝苋和大豆光合特征的比较[J].江苏农业学报,2019,(03):554.[doi:doi:10.3969/j.issn.1000-4440.2019.03.008]
SUN Yan-kun,CHEN Rui,LI Jing,et al.Comparison of photosynthetic characteristics between Amaranthus retroexus and Glycine max under different annual rainfall pattern[J].,2019,(07):554.[doi:doi:10.3969/j.issn.1000-4440.2019.03.008]
[6]曹媛媛,陈春,郭婷婷,等.亲和性促生菌DW12-L的定殖及其对大豆生长的影响[J].江苏农业学报,2019,(04):776.[doi:doi:10.3969/j.issn.1000-4440.2019.04.004]
CAO Yuan yuan,CHEN Chun,GUO Ting ting,et al.Colonization of soybean affinity rhizobacteria strain DW12-L and its effects on soybean growth[J].,2019,(07):776.[doi:doi:10.3969/j.issn.1000-4440.2019.04.004]
[7]丁俊男,于少鹏,李鑫,等.生物炭对大豆生理指标和农艺性状的影响[J].江苏农业学报,2019,(04):784.[doi:doi:10.3969/j.issn.1000-4440.2019.04.005]
DING Jun nan,YU Shao peng,LI Xin,et al.Effects of biochar application on soybean physiological indices and agronomic traits[J].,2019,(07):784.[doi:doi:10.3969/j.issn.1000-4440.2019.04.005]
[8]曹帅,杜仲阳,刘鹏,等.碱胁迫对大豆光合特性及内源激素含量的影响[J].江苏农业学报,2020,(02):284.[doi:doi:10.3969/j.issn.1000-4440.2020.02.005]
CAO Shuai,DU Zhong-yang,LIU Peng,et al.Effects of alkaline stress on photosynthetic characteristics and endogenous hormone contents of soybean[J].,2020,(07):284.[doi:doi:10.3969/j.issn.1000-4440.2020.02.005]
[9]邱爽,张军,何佳琦,等.大豆GmGolS2-1基因高温胁迫诱导表达及转基因烟草鉴定[J].江苏农业学报,2021,(01):38.[doi:doi:10.3969/j.issn.1000-4440.2021.01.005]
QIU Shuang,ZHANG Jun,HE Jia-qi,et al.Expression of soybean GmGolS2-1 induced by heat stress and identification of GmGolS2-1 transgenic tobacco[J].,2021,(07):38.[doi:doi:10.3969/j.issn.1000-4440.2021.01.005]
[10]张斌,陈丽娟,李其华,等.栽培大豆GRAS转录因子家族基因鉴定及其盐胁迫下表达模式分析[J].江苏农业学报,2021,(02):296.[doi:doi:10.3969/j.issn.1000-4440.2021.02.004]
ZHANG Bin,CHEN Li-juan,LI Qi-hua,et al.Identification of gene of GRAS transcription factor family in cultivated soybean(Glycine max L.) and expression pattern analysis under salt stress[J].,2021,(07):296.[doi:doi:10.3969/j.issn.1000-4440.2021.02.004]