[1]张斌,陈丽娟,李其华,等.栽培大豆GRAS转录因子家族基因鉴定及其盐胁迫下表达模式分析[J].江苏农业学报,2021,(02):296-309.[doi:doi:10.3969/j.issn.1000-4440.2021.02.004]
 ZHANG Bin,CHEN Li-juan,LI Qi-hua,et al.Identification of gene of GRAS transcription factor family in cultivated soybean(Glycine max L.) and expression pattern analysis under salt stress[J].,2021,(02):296-309.[doi:doi:10.3969/j.issn.1000-4440.2021.02.004]
点击复制

栽培大豆GRAS转录因子家族基因鉴定及其盐胁迫下表达模式分析()
分享到:

江苏农业学报[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2021年02期
页码:
296-309
栏目:
遗传育种·生理生化
出版日期:
2021-04-30

文章信息/Info

Title:
Identification of gene of GRAS transcription factor family in cultivated soybean(Glycine max L.) and expression pattern analysis under salt stress
作者:
张斌陈丽娟李其华唐满生
(湖南科技学院化学与生物工程学院,湖南省银杏工程技术研究中心,湖南永州425199)
Author(s):
ZHANG BinCHEN Li-juanLI Qi-huaTANG Man-sheng
(Hunan Provincial Engineering Research Center for Ginkgo, College of Chemistry and Bioengineering, Hunan University of Science and Engineering, Yongzhou 425199, China)
关键词:
大豆GRAS家族盐胁迫表达模式
Keywords:
soybeanGRAS familysalt stressexpression pattern
分类号:
S565.101
DOI:
doi:10.3969/j.issn.1000-4440.2021.02.004
文献标志码:
A
摘要:
利用生物信息学手段及转录组测序方法对大豆78个GRAS家族基因进行系统分析。染色体定位结果表明78个GRAS基因不均匀地分布在20条染色体上。通过系统进化分析将大豆GRAS家族分为11个亚族。基因结构和保守基序分布分析结果表明GRAS家族成员在进化上具有保守性,尤其是进化关系较近的成员多具有类似的基因结构和蛋白质结构。转录组数据及qRT-PCR结果显示,5个基因受盐胁迫诱导上调,5个基因受盐胁迫诱导下调,其中GmGRAS14、GmGRAS33和GmGRAS69在盐处理12 h时上调倍数最高,而GmGRAS17、GmGRAS54和GmGRAS57在盐处理12 h时表达量下调倍数最高,说明这些基因可能在大豆响应盐胁迫方面发挥重要功能。
Abstract:
In this study, 78 genes of GRAS family in soybean were systematically investigated using bioinformatics and RNA-seq. The chromosomal distribution map showed that 78 GRAS genes were randomly located in 20 chromosomes. Phylogenetic analysis showed that the soybean GRAS family could be divided into 11 subfamilies. The gene structure and conserved motif distribution analysis suggested that the GRAS family members were consertive in evolution, and most of the GRAS members with close evolutionary relationship had similar gene and protein structures. Transcriptomal and qRT-PCR results showed that five genes were up-regulated and five genes were down-regulated under salt stress. Among them, GmGRAS14, GmGRAS33 and GmGRAS69 had the highest fold of up-regulation at 12 h of salt treatment. GmGRAS17, GmGRAS54 and GmGRAS57 showed the highest down-regulation multiple at 12 h of salt treatment, suggesting that these genes may play an important role in the response to salt stress of soybean.

参考文献/References:

[1]HOANG X L T, NHI D N H, THU N B A, et al. Transcription factors and their roles in signal transduction in plants under abiotic stresses[J]. Current Genomics, 2017, 18(6): 483-497.
[2]DI LL, WYSOCKADILLER J, MALAMY JE, et al. The SCARECROW gene regulates an asymmetric cell division that is essential for generating the radial organization of the Arabidopsis root[J]. Cell, 1996, 86(3): 423-433.
[3]PENG J, CAROL P, RICHARDS D E, et al. The Arabidopsis GAI gene defines a signaling pathway that negatively regulates gibberellin responses[J]. Genes & Development, 1997, 11(23):3194.
[4]SILVERSTONE A L, CIAMPAGLIO C N, SUN T. The Arabidopsis RGA gene encodes a transcriptional regulator repressing the gibberellin signal transduction pathway[J]. Plant Cell, 1998, 10(2): 155-169.
[5]SUN X, XUE B, JONES W T, et al. A functionally required unfoldome from the plant kingdom: intrinsically disordered Nterminal domains of GRAS proteins are involved in molecular recognition during plant development[J]. Plant Molecular Biology, 2011, 77(3): 205-223.
[6]HISCH S, OLDROYD G E D. GRAS-domain transcription factors that regulate plant development[J]. Plant Signaling & Behavior, 2009, 4(8): 698-700.
[7]XY W, CHEN Z, AHMED N, et al. Genome-wide identification, evolutionary analysis, and stress responses of the GRAS gene family in Castor beans[J]. International Journal of Molecular Sciences, 2016, 17(7):1004.
[8]ZHANG B, LIU J, YANG Z E, et al. Genome-wide analysis of GRAS transcription factor gene family in Gossypium hirsutum L[J]. BMC Genomics, 2018, 19(1): 348.
[9]SHAN Z Y, LUO X L, WU M Y. Genome-wide identification and expression of GRAS gene family members in cassava[J]. BMC Plant Biology, 2020, 20(1): 46.
[10]TIAN C, WAN P, SUN S, et al. Genome-wide analysis of the GRAS gene family in rice and Arabidopsis[J]. Plant Molecular Biology, 2004, 54(4): 519-532.
[11]CHEN Y Q, TAI S S, WANG D W, et al. Homology-based analysis of the GRAS gene family in tobacco[J]. Genetics and Molecular Research, 2015, 14(4): 15188-15200.
[12]GUO Y, WU H, LI X, et al. Identification and expression of GRAS family genes in maize (Zea mays L.)[J]. PLoS One, 2017, 12(9): e0185418.
[13]LIU X, WIDMER A. Genome-wide comparative analysis of the GRAS gene family in populus, Arabidopsis and rice[J]. Plant Molecular Biology Reporter, 2014, 32(6): 1129-1145.
[14]CHEN Y, ZHU P P, WU S Y. Identification and expression analysis of GRAS transcription factors in the wild relative of sweet potato Ipomoea trifida[J]. BMC Genomics, 2019, 20(1): 911.
[15]BOLLE C. The role of GRAS proteins in plant signal transduction and development[J]. Planta, 2004, 218(5): 683-692.
[16]HEO J, CHANG K, KIM I, et al. Funneling of gibberellin signaling by the GRAS transcription regulator SCARECROW-LIKE 3 in the Arabidopsis root[J]. PNAS, 2011, 108(5): 2166-2171.
[17]LI W, WU J, WENG S, et al. Identification and characterization of dwarf 62, a loss-of-function mutation in DLT/OsGRAS-32 affecting gibberellin metabolism in rice[J]. Planta, 2010, 232(6): 1383-1396.
[18]BAI Z, XIA P, WANG R, et al. Molecular cloning and characterization of five SmGRAS genes associated with tanshinone biosynthesis in Salvia miltiorrhiza hairy roots[J]. PLoS One, 2017, 12(9): e0185322.
[19]TANABE S, ONODERA H, HARA N, et al. The elicitor-responsive gene for a GRAS family protein, CIGR2, suppresses cell death in rice inoculated with rice blast fungus via activation of a heat shock transcription factor, OsHsf23[J]. Bioscience, Biotechnology and Biochemistry, 2016, 80(2): 1145-1151.
[20]YANG M, YANG Q, FU T, et al. Overexpression of the Brassica napus BnLAS gene in Arabidopsis affects plant development and increases drought tolerance[J]. Plant Cell Reports, 2011, 30(3): 373-388.
[21]MA HS, LIANG D, SHUAI P, et al. The salt- and drought-inducible poplar GRAS protein SCL7 confers salt and drought tolerance in Arabidopsis thaliana[J]. Journal of Experimental Botany, 2010, 61(14): 4011-4019.
[22]HABIB S, WASEEM M, LI N, et al. Overexpression of SlGRAS7 affects multiple behaviors leading to confer abiotic stresses tolerance and impacts gibberellin and auxin signaling in tomato[J]. International Journal of Genomics, 2019, 2019: 4051981.
[23]HOSSAIN M S, HOANG N T, YAN Z. Characterization of the spatial and temporal expression of two soybean miRNAs identifies SCL6 as a novel regulator of soybean nodulation[J]. Frontiers in Plant Science, 2019, 10: 475.
[24]VOORRIPS R E. MapChart: Software for the graphical presentation of linkage maps and QTLs[J]. Journal of Heredity, 2002, 93(1): 77-78.
[25]HU B, JIN J, GUO A, et al. GSDS 2.0: an upgraded gene feature visualization server[J]. Bioinformatics, 2015, 31(8): 1296.
[26]BAILEY T L, MIKAEL B, BUSKE F A , et al. MEME Suite: tools for motif discovery and searching[J]. Nucleic Acids Research, 2009, 37(S): 202-208.
[27]PI B Y, HE X H, RUAN Y, et al. Genome-wide analysis and stressresponsive expression of CCCH zinc finger family genes in Brassica rapa[J]. BMC Plant Biology, 2018, 18(1): 373.
[28]SONG X, LIU T, DUAN W, et al. Genome-wide analysis of the GRAS gene family in Chinese cabbage (Brassica rapa ssp. pekinensis)[J]. Genomics, 2014, 103(1):135-146.
[29]WU N N, ZHU Y, SONG W L, et al. Unusual tandem expansion and positive selection in subgroups of the plant GRAS transcription factor superfamily[J]. BMC Plant Biology, 2014, 14:373.
[30]李倩,盖江涛,白蓓蓓,等.茄科植物中HCT基因家族的鉴定及进化和表达分析[J].江苏农业科学,2019,47(19):65-68.
[31]付瑜华,蒙秋伊,李秀诗,等. 薏苡油脂合成关键基因克隆及其生物信息学分析[J].南方农业学报,2020,51(3):485-495.
[32]陈亨德,褚武英,李玉珑,等. 罗非鱼SIRT1基因的克隆及其表达规律分析[J]. 江苏农业科学,2019,47(21):103-106.

相似文献/References:

[1]刘朝茂,李成云.玉米与大豆间作对玉米叶片衰老的影响[J].江苏农业学报,2017,(02):322.[doi:doi:10.3969/j.issn.1000-4440.2017.02.013]
 LIU Chao-mao,LI Cheng-yun.Effects of maize/soybean intercropping on maize leaf senescence[J].,2017,(02):322.[doi:doi:10.3969/j.issn.1000-4440.2017.02.013]
[2]张令瑄,谢婷婷,王瑾,等.大田条件下UV-B 辐射增强对大豆根际土壤相关指标的影响[J].江苏农业学报,2016,(01):118.[doi:10.3969/j.issn.1000-4440.2016.01.018]
 ZHANG Ling-xuan,XIE Ting-ting,WANG Jin,et al.Soybean rhizosphere soil parameters in response to enhanced UV-B radiation under field condition[J].,2016,(02):118.[doi:10.3969/j.issn.1000-4440.2016.01.018]
[3]宁丽华,何晓兰,张大勇.大豆耐盐相关基因GmNcl1功能标记的开发及验证[J].江苏农业学报,2017,(06):1227.[doi:doi:10.3969/j.issn.1000-4440.2017.06.005]
 NING Li-hua,HE Xiao-lan,ZHANG Da-yong.Development and validation of the function marker of soybean salt tolerance gene GmNcl1[J].,2017,(02):1227.[doi:doi:10.3969/j.issn.1000-4440.2017.06.005]
[4]杨艳丽,杨勇,李大红,等.转桃PpCuZnSOD基因大豆的耐旱性[J].江苏农业学报,2018,(05):978.[doi:doi:10.3969/j.issn.1000-4440.2018.05.003]
 YANG Yan-li,YANG Yong,LI Da-hong,et al.Drought tolerance of transgenic soybean with PpCuZnSOD gene[J].,2018,(02):978.[doi:doi:10.3969/j.issn.1000-4440.2018.05.003]
[5]孙彦坤,陈睿,李静,等.不同降雨年型下反枝苋和大豆光合特征的比较[J].江苏农业学报,2019,(03):554.[doi:doi:10.3969/j.issn.1000-4440.2019.03.008]
 SUN Yan-kun,CHEN Rui,LI Jing,et al.Comparison of photosynthetic characteristics between Amaranthus retroexus and Glycine max under different annual rainfall pattern[J].,2019,(02):554.[doi:doi:10.3969/j.issn.1000-4440.2019.03.008]
[6]曹媛媛,陈春,郭婷婷,等.亲和性促生菌DW12-L的定殖及其对大豆生长的影响[J].江苏农业学报,2019,(04):776.[doi:doi:10.3969/j.issn.1000-4440.2019.04.004]
 CAO Yuan yuan,CHEN Chun,GUO Ting ting,et al.Colonization of soybean affinity rhizobacteria strain DW12-L and its effects on soybean growth[J].,2019,(02):776.[doi:doi:10.3969/j.issn.1000-4440.2019.04.004]
[7]丁俊男,于少鹏,李鑫,等.生物炭对大豆生理指标和农艺性状的影响[J].江苏农业学报,2019,(04):784.[doi:doi:10.3969/j.issn.1000-4440.2019.04.005]
 DING Jun nan,YU Shao peng,LI Xin,et al.Effects of biochar application on soybean physiological indices and agronomic traits[J].,2019,(02):784.[doi:doi:10.3969/j.issn.1000-4440.2019.04.005]
[8]曹帅,杜仲阳,刘鹏,等.碱胁迫对大豆光合特性及内源激素含量的影响[J].江苏农业学报,2020,(02):284.[doi:doi:10.3969/j.issn.1000-4440.2020.02.005]
 CAO Shuai,DU Zhong-yang,LIU Peng,et al.Effects of alkaline stress on photosynthetic characteristics and endogenous hormone contents of soybean[J].,2020,(02):284.[doi:doi:10.3969/j.issn.1000-4440.2020.02.005]
[9]邱爽,张军,何佳琦,等.大豆GmGolS2-1基因高温胁迫诱导表达及转基因烟草鉴定[J].江苏农业学报,2021,(01):38.[doi:doi:10.3969/j.issn.1000-4440.2021.01.005]
 QIU Shuang,ZHANG Jun,HE Jia-qi,et al.Expression of soybean GmGolS2-1 induced by heat stress and identification of GmGolS2-1 transgenic tobacco[J].,2021,(02):38.[doi:doi:10.3969/j.issn.1000-4440.2021.01.005]
[10]张威,许文静,许亚男,等.基于CRISPR/Cas9基因编辑的高油酸大豆品系创制[J].江苏农业学报,2023,(02):321.[doi:doi:10.3969/j.issn.1000-4440.2023.02.003]
 ZHANG Wei,XU Wen-jing,XU Ya-nan,et al.Creation of high oleic acid soybean lines by CRISPR/Cas9[J].,2023,(02):321.[doi:doi:10.3969/j.issn.1000-4440.2023.02.003]

备注/Memo

备注/Memo:
收稿日期:2020-05-11基金项目:湖南科技学院重点项目(17XKY012);湖南省大学生研究性学习和创新性实验计划项目[湘教通(2018)255号]作者简介:张斌(1981-),男,湖南永州人,博士,讲师,主要从事植物发育生物学研究。(E-mail)zhangbin27104@163.com通讯作者:唐满生,(E-mail)manshengtang@sina.com
更新日期/Last Update: 2021-05-10