参考文献/References:
[1]张艳艳,黄玉舟,李丽,等. 花色苷的研究进展[J]. 食品安全导刊,2019(15):155.
[2]彭祖茂,邓梦雅,严虞虞,等. 植物中花青素含量测定及种类分布研究[J]. 食品研究与开发,2018,39(17):107-111.
[3]常仁杰,何勇,朱祝军. 植物花色苷抗逆性作用研究进展[J]. 北方园艺,2013(9):216-219.
[4]HUGHES N M, CONNORS M K, GRACE M H, et al. The same anthocyanins served four different ways: Insights into anthocyanin structure-function relationships from the wintergreen orchid, Tipularia discolor[J]. Plant Science,2020, 303: 110793.
[5]郭红辉,卫晓怡,凌文华. 花色苷代谢的研究进展[J]. 食品研究与开发,2011,32(5):163-166.
[6]闫亚美,冯丹萍,陈晓燕,等. 黑果枸杞花色苷的肥胖干预作用研究进展[J]. 食品科学技术学报,2020,38(4):21-26.
[7]刘晓芬,李方,殷学仁,等.花青苷生物合成转录调控研究进展[J]. 园艺学报,2013,40(11):2295-2306.
[8]张宁,胡宗利,陈绪清,等. 植物花青素代谢途径分析及调控模型建立[J]. 中国生物工程杂志,2008,28(1):97-105.
[9]赵启明,李范,李萍. 花青素生物合成关键酶的研究进展[J]. 生物技术通报,2012(12):25-32.
[10]张龙,李卫华,姜淑梅,等. 花色素苷生物合成与分子调控研究进展[J]. 园艺学报,2008,35(6):909-916.
[11]王蕾,韦灵林,徐虹. 矮牵牛花色素苷合成途径中的关键酶及其转录调控[J]. 细胞生物学杂志,2009,31(5):641-650.
[12]YING-CHANG L I, FENG-YUAN Q I, FAN Y. Research advances of the stability of anthocyanins.[J]. China Condiment,2009,34(11):88-90,111.
[13]李栋,李莉,徐艳群,等. 植物中花色苷转运蛋白研究进展[J]. 食品安全质量检测学报,2020,11(3):15-20.
[14]柯燚,高飞,金韬,等. 温度对植物花青素苷合成影响研究进展[J]. 中国农学通报,2015,31(19):101-105.
[15]CANTERO A, BARTHAKUR S, BUSHART T J, et al. Expression profiling of the Arabidopsis anmexin gene family during germination, de-etiolation and abiotic stress[J]. Plant Physiology and Biochemistry,2006,44(1):13-24.
[16]SHENG J J, LI X, HE Y M, et al. Effect of UV-B radiation on anthocyanin anabolism and its molecular mechanism[J]. Plant Physiology Journal,2019,55(7):949-958.
[17]VUKOJA J, PICHLER A, KOPJAR M, et al. Stability of anthocyanins, phenolics and color of tart cherry jams[J]. Foods,2019,8(7):255.
[18]SHAKED-SACHRAY L, WEISS D, REUVENI M, et al. Increased anthocyanin accumulation in aster flowers at elevated temperatures due to magnesium treatment[J]. Physiologia Plantarum,2002, 114(4):559-565.
[19]REHMAN R N U. 温度变化和发育阶段对海棠中酚类物质及花色苷降解的影响[D]. 陕西:西北农林科技大学,2017.
[20]关晓弯,陈磊,涂佳丽,等. 石榴果肉PgF3′5′H基因克隆及不同温度处理下的表达分析[J]. 西北植物学报,2016,36(3):435-443.
[21]REHMAN R, YOU Y, LEI Z, et al. High temperature induced anthocyanin inhibition and active degradation in malus profusion[J]. Frontiers in Plant Science,2017,8:1401.
[22]房鸿成. B-box转录因子介导UV-B和温度调控苹果果实着色的机理[D]. 泰安:山东农业大学,2019.
[23]ZHANG K M, TIAN G, LI X H, et al. ROS produced via BsRBOHD plays an important role in low temperature-induced anthocyanin biosynthesis in begonia semperflorens[J]. Russian Journal of Plant Physiology,2020,67(2):250-258.
[24]YAMANE T, JEONG S T, GOTO-YAMAMOTO N, et al. Effects of temperature on anthocyanin biosynthesis in grape berry skins[J]. American Journal of Enology and Viticulture,2006,57(1):54-59.
[25]JI T, HAN Z Y, ZHANG L R, et al. Induction of anthocyanin accumulation in Crabapple (Malus cv.) leaves by low temperatures[J]. Hort Science,2015,50(5):640-649.
[26]BAN Y, HONDA C, HATSUYAMA Y, et al. Isolation and functional analysis of a MYB transcription factor gene that is a key regulator for the development of red coloration in apple skin[J]. Plant & Cell Physiology,2007,48(7):958.
[27]XIE X B, LI S, ZHANG R F, et al. The bHLH transcription factor MdbHLH3 promotes anthocyanin accumulation and fruit colouration in response to low temperature in apples[J]. Plant, Cell & Environment,2012,35(11):1884-1897.
[28]HUANG D, YUAN Y, TANG Z, et al. Retrotransposon promoter of Ruby1 controls both light-and cold-induced accumulation of anthocyanins in blood orange[J]. Plant, Cell & Environment,2019,42(11):3092-3104.
[29]BUTELLI E, LICCIARDELLO C, ZHANG Y, et al. Retrotransposons control fruit-specific, cold-dependent accumulation of anthocyanins in blood oranges[J]. Plant Cell,2012,24(3):1242-1255.
[30]HUANG D, WANG X, TANG Z Z, et al. Subfunctionalization of the Ruby2-Ruby1 gene cluster during the domestication of citrus[J]. Nature Plants,2018,4(11):930-941.
[31]李天来,王峰,王秀杰,等. 光对园艺植物花青素生物合成的调控作用[J]. 中国农业科学,2020,53(23):188-201.
[32]宋哲,李天忠,徐贵轩,等. 光质对‘红富士’苹果果实着色的影响[J]. 生态学报,2009,29(5):2304-2311.
[33]DI W, HU Q, YAN Z, et al. Structural basis of ultraviolet-B perception by UVR8[J]. Nature,2012,484(7393):214-219.
[34]LI Y Y, MAO K, ZHAO C, et al. MdCOP1 Ubiquitin E3 ligases interact with MdMYB1 to regulate light-induced anthocyanin biosynthesis and red fruit coloration in apple[J]. Plant Physiology,2012,160(2):1011-1022.
[35]HUANG X, OUYANG X, YANG P, et al. Arabidopsis FHY3 and HY5 positively mediate induction of COP1 transcription in response to photomorphogenic UV-B Light[J]. Plant Cell,2012,24(11):4590-4606.
[36]XI H. UVR8 mutations affect UV-B light perception, UVR8 monomerization and UVR8-COP1 association[J]. PLoS Genetic,2014,10:55.
[37]MENG R, WANG Y, ZHANG B, et al. Anthocyanin biosynthesis in the apple skin of ‘Granny Smith’ after bag removal[J]. Food Science,2015,22:240-245.
[38]TAKOS A M, FELIX W J, JACOB S R, et al. Light-induced expression of a MYB gene regulates anthocyanin biosynthesis in red apples[J]. Plant Physiology,2018,142(3):1216-1232.
[39]邵婉璐,李月灵,高松,等. 光照度对成熟红颜草莓果实着色和花青素生物合成的影响及可能的分子机制[J]. 植物研究,2018(5):661-668.
[40]LU Y F, ZHANG M L, MENG X N, et al. Photoperiod and shading regulate coloration and anthocyanin accumulation in the leaves of malus crabapples[J]. Plant Cell Tissue & Organ Culture An International Journal on in Vitro Culture of Higher Plants,2015, 121:619-632.
[41]汤红,李娜,曾教科,等. 植物激素调控果实色泽形成的分子机制研究进展[J]. 分子植物育种,2019,17(8):2705-2711.
[42]JEONG S T, GOTO-YAMAMOTO N, KOBAYASHI S, et al. Effects of plant hormones and shading on the accumulation of anthocyanins and the expression of anthocyanin biosynthetic genes in grape berry skins[J]. Plant Ence,2004,167(2):247-252.
[43]WANG Y C, WANG N, XU H F, et al. Auxin regulates anthocyanin biosynthesis through the Aux/IAA-ARF signaling pathway in apple.[J]. Horticulture Research,2018,1(5):59.
[44]GUIFOYLE T J, VLMASOV T, HAGEN G. The ARF family of transcription factors and their role in plant hormone-responsive transcription[J]. Cell Mol Life Sci,1998,54(7):619-627.
[45]JI X H, WANG Y T, ZHANG R. Effect of auxin, cytokinin and nitrogen on anthocyanin biosynthesis in callus cultures of red-fleshed apple[J]. Plant Cell,Tissue and Organ Culture (PCTOC),2015,120(1):325-337.
[46]SUPRASANNA P, RAO K V, REDDY G M. Anthocyanin synthesis during embryogenesis in vitro[J]. Plant Cell,1990,5(14):335-339.
[47]DAS P K, DONG H S, CHOI S B, et al. Cytokinins enhance sugar-induced anthocyanin biosynthesis in Arabidopsis[J]. Molecules & Cells,2012,34(1):93-101.
[48]VERSLUES, PAUL E. ABA and cytokinins: challenge and opportunity for plant stress research[J]. Plant Molecular Biology,2016,91(6):629-640.
[49]柳巧禛,席奔,孙艳丽,等. 外源6-BA对葡萄果实花色苷含量及相关基因表达的影响[J].西北农林科技大学学报,2019,47(2):112-118.
[50]BULGAKOV V P, WU H C, JINN T L. Coordination of ABA and chaperone signaling in plant stress responses[J]. Trends in Plant Science,2019,24(7):636-651.
[51]于淼,刘海峰,王军. ABA对葡萄花色苷合成相关基因表达的影响[J]. 果树学报,2012,29(1):29-35.
[52]HIRATSUKA S, ONODERA H, KAWAI Y, et al. ABA and sugar effects on anthocyanin formation in grape berry cultured in vitro[J]. Scientia Horticulturae,2001,90(1/2):121-130.
[53]JIA H F, CHAI Y M, LI C L, et al. Abscisic acid plays an important role in the regulation of strawberry fruit ripening[J]. Plant Physiology,2011,157(1):188-199.
[54]COOMBE B G, HALE C R. The hormone content of ripening grape berries and the effects of growth substance treatments[J]. Plant Physiology,1973,51(4):629-34.
[55]肖瑞雪,郭丽丽,贾琦石,等. 油菜素内酯调控植物生长发育及产量品质研究进展[J]. 江苏农业科学,2019,47(10):16-21.
[56]马立娜,惠竹梅,霍珊珊,等. 油菜素内酯和脱落酸调控葡萄果实花色苷合成的研究[J]. 果树学报,2012,29(5):820-836.
[57]张睿佳,李瑛,虞秀明,等. 高温胁迫与外源油菜素内酯对‘巨峰’葡萄叶片光合生理和果实品质的影响[J]. 果树学报,2015,32(4):72-78.
[58]肖永英,甘立军,夏凯. 茉莉酸酯类和6-BA对葡萄果实品质的影响[J]. 江苏农业科学,2008(6):153-155.
[59]赵婉珍. 叶面喷施茉莉酸甲酯对美乐酿酒葡萄花色苷含量及合成酶的影响[D]. 兰州:甘肃农业大学,2017.
[60]WANG Y, LIU W, JIANG H, et al. The R2R3-MYB transcription factor MdMYB24-like is involved in methyl jasmonate-induced anthocyanin biosynthesis in apple[J]. Plant Physiology & Biochemistry,2019,139:273-282.
[61]DU H, ZHANG L, LIU L, et al. Biochemical and molecular characterization of plant MYB transcription factor family[J]. Biochemistry Biokhimiia,2009,74(1):1-11.
[62]ISHII S. Myb: structure and regulation of activity[J]. Tanpakushitsu Kakusan Koso Protein Nucleic Acid Enzyme,1996,41(8):1320-1327.
[63]ZIMMERMANN I M, HEIM M A, WEISSHAAR B, et al. Comprehensive identification of Arabidopsis thaliana MYB transcription factors interacting with R/B-like BHLH proteins[J]. Plant Journal,2010,40(1):22-34.
[64]LIN-WANG K, BOLITHO K, GRAFTON K, et al. An R2R3 MYB transcription factor associated with regulation of the anthocyanin biosynthetic pathway in Rosaceae[J]. Bmc Plant Biology,2010,10(1):50.
[65]余敏. 猕猴桃花青苷着色——MYB调节基因的鉴定及其功能解析[D]. 北京:中国科学院大学,2020.
[66]JIANG S, CHEN M, HE N, et al. MdGSTF6, activated by MdMYB1, plays an essential role in anthocyanin accumulation in apple[J]. Horticulture Research,2019,6(1):40.
[67]牛铁泉,董燕梅,刘海霞,等. 葡萄果实MYBA1与UFGT、DFR的作用机制[J]. 中国农业科学,2018,51(12):149-158.
[68]GAO Y L, XIE L F, MA Y Y, et al. PpMYB15 and PpMYBF1 transcription factors are involved in regulating flavonol biosynthesis in peach fruit[J]. Journal of Agricultural & Food Chemistry,2018,67(2):644-652.
[69]董金皋,樊锦涛,蒋琛茜,等. 拟南芥R2R3-MYB家族22亚族的结构与功能分析[J]. 遗传,2014(10):985-994.
[70]HONG G Z, XI B, ZHU Y,et al. A single-repeat R3-MYB transcription factor MYBC1 negatively regulates freezing tolerance in Arabidopsis[J].Biochemical and Biophysical Research Communications,2010,394(4):1018-1023.
[71]SARA C, PIERDOMENICO P, SILVIA G. The atroviolacea gene encodes an R3-MYB protein repressing anthocyanin synthesis in tomato plants[J]. Frontiers in Plant Science, 2018,9:830.
[72]XU H, ZOU Q, YANG G, et al. MdMYB6 regulates anthocyanin formation in apple both through direct inhibition of the biosynthesis pathway and through substrate removal[J]. Horticulture Research,2020,7(72):3434.
[73]GAO J J, SHEN X F, ZHEN Z, et al. The myb transcription factor MdMYB6 suppresses anthocyanin biosynthesis in transgenic Arabidopsis[J]. Plant Cell Tissue & Organ Culture,2011,106(2):235-242.
[74]方智振,姜翠翠,周丹蓉,等. ‘秋姬李’PsMYB18基因克隆与功能分析[J]. 果树学报,2019,36(7):15-23.
[75]BOSS P K, DAVIES C, ROBINSON S P. Expression of anthocyanin biosynthesis pathway genes in red and white grapes[J]. Plant Molecular Biology,1996,32(3):565-569.
[76]CARRASCO D, LORENZIS G D, MAGHRADZE D, et al. Allelic variation in the VvMYBA1 and VvMYBA2 domestication genes in natural grapevine populations (Vitis vinifera subsp. sylvestris)[J]. Plant Systematics & Evolution,2015,301:1613-1624 .
[77]KOBAYASHI S, ISHIMARU M, DING C K, et al. Comparison of UDP-glucose:flavonoid 3-O-glucosyltransferase (UFGT) gene sequences between white grapes (Vitis vinifera) and their sports with red skin[J]. Plant Science,2001,160(3):543-550.
[78]WALKER A R, LEE E, BOGS J, et al. White grapes arose through the mutation of two similar and adjacent regulatory genes[J]. Plant Journal,2010,49(5):772-785.
[79]KOBAYASHI S. Retrotransposon-induced mutations in grape skin color[J]. Science,2004,304(5673):982.
[80]SPELT C. Anthocyanin1 of petunia encodes a basic helix-loop-helix protein that directly activates transcription of structural anthocyanin genes[J]. The Plont Cell,2000,12(9):1619-1632.
[81]ROBINSON K A, KOEPKE J I, MURTAZA K, et al. A network of yeast basic helix-loop-helix interactions[J]. Nucleic Acids Research,2000,28(22):4460-4466.
[82]MUHAMMAD, WASEEM, NING, et al. Overexpression of a basic helix-loop-helix transcription factor gene, SlbHLH22, promotes early flowering and accelerates fruit ripening in tomato (Solanum lycopersicum L.)[J]. Planta,2019,250:173-185.
[83]许海峰. bHLH33与MYB抑制子参与苹果花青苷生物合成的分子机理[D]. 山东:山东农业大学,2020.
[84]HICHRI I, HEPPEL S C, PILLET J, et al. The basic helix-loop-helix transcription factor MYC1 is involved in the regulation of the flavonoid biosynthesis pathway in grapevine[J]. Molecular Plant,2010,3(3):509-523.
[85]杨鹏程,周波,李玉花. 植物花青素合成相关的bHLH转录因子[J]. 植物生理学报,2012,48(8):747-758.
[86]刘化禹. 蓝果忍冬花色苷合成bHLH转录因子筛选及LcTT8功能验证[D]. 哈尔滨:东北农业大学,2019.
[87]ESPLEY R V, HELLENS R P, PUTTERILL J, et al. Red colouration in apple fruit is due to the activity of the MYB transcription factor, MdMYB10[J]. Plant J,2010,49(3):414-427.
[88]CHAO X, MIN J. Structure and function of WD40 domain proteins[J]. Protein & Cell,2011,2(3):202-214.
[89]ZENG J, MA W, LU M, et al. Cloning and bioinformatics analysis of WD40 transcription factor RroTTG1 in rosa roxburghii tratt[J]. Molecular Plant Breeding,2019,17 (22 ):7331-7337.
[90]AN X H, YI T, CHEN K Q, et al. The apple WD40 protein MdTTG1 interacts with bHLH but not MYB proteins to regulate anthocyanin accumulation.[J]. Journal of Plant Physiology,2012,169(7):710-717.
[91]STRYGINA K V, KHLESTKINA E K. Structural and functional organization and evolution of the WD40 genes involved in the regulation of flavonoid biosynthesis in the triticeae tribe[J]. Russian Journal of Genetics,2019,55(11):1398-1405.
[92]ROUHOLAMIN S, ZAHEDI B, NAZARIAN-FIROUZABADI F, et al. Expression analysis of anthocyanin biosynthesis key regulatory genes involved in pomegranate (Punica granatum L.)[J]. Scientia Horticulturae,2015,186:84-88.
[93]ZAHAR B S, SYLVIE J, TALIA N H. A pomegranate (Punica granatum L.) WD40-repeat gene is a functional homologue of Arabidopsis TTG1 and is involved in the regulation of anthocyanin biosynthesis during pomegranate fruit development[J]. Planta,2011,234(5):865-881.
[94]LI S, REVIEW C A I. Transcriptional control of flavonoid biosynthesis: fine-tuning of the MYB-bHLH-WD40 (MBW) complex[J]. Plant signaling & behavior,2014,9(1):e27522.
[95]NOCKER S V, LUDWIG P. The WD-repeat protein superfamily in Arabidopsis: conservation and divergence in structure and function[J]. Bmc Genomics,2003,4(1):50.
[96]LIU X, HAO F C, ZHANG M, et al. The MrWD40-1 gene of chinese Bayberry (Myrica rubra) interacts with MYB and bHLH to enhance anthocyanin accumulation[J]. Plant Molecular Biology Reporter,2013,31(6):1474-1484.
[97]GU Z, ZHU J, HAO Q, et al. A Novel R2R3-MYB transcription factor contributes to petal blotch formation by regulating organ-specific expression of PsCHS in tree peony (Paeonia suffruticosa)[J]. Plant and Cell Physiology,2019,3:599-611.
[98]王怀琴. 丹参中调控丹酚酸B生物合成的MYB-bHLH-WD40三元复合体的鉴定[D]. 西安:陕西师范大学,2017.
[99]YAMAGISH M, SHIMOYAMADA Y, NAKATSUKA T, et al. Two R2R3-MYB genes, homologs of petunia AN2, regulate anthocyanin biosyntheses in flower tepals, tepal spots and leaves of asiatic hybrid lily[J]. Plant and Cell Physiology,2010,51(3):463-474.
[100]刘晓芬. MYB-bHLH-WD40对杨梅花青苷生物合成的转录调控机制[D]. 杭州:浙江大学,2013.
[101]LAI B, DU L N, RUI L, et al. Two LcbHLH transcription factors interacting with LcMYB1 in regulating late structural genes of anthocyanin biosynthesis in nicotiana and litchi chinensis during anthocyanin accumulation[J]. Frontiers in Plant Science,2016,7:166.
[102]SHEN X, KAI Z, LIU L, et al. A role for PacMYBA in ABA-regulated anthocyanin biosynthesis in Red-colored sweet cherry cv. Hong Deng (Prunus avium L.)[J]. Plant and Cell Physiology,2014,55(5):862-880.
[103]徐僡,郑远静,高方平,等. 花色苷的生物合成及其影响因素研究进展[J]. 江苏农业学报,2019,35(5):1246-1253.
[104]刘闯萍,王军. 葡萄花色苷的生物合成[J]. 植物生理学报, 2008, 44(2):363-377.
[105]HU J, FANG H, WANG J, et al. Ultraviolet B-induced MdWRKY72 expression promotes anthocyanin synthesis in apple[J]. Plant Science,2020,292:110377.
[106]FANG H, DONG Y, YUE X, et al. The B-box zinc finger protein MdBBX20 integrates anthocyanin accumulation in response to ultraviolet radiation and low temperature[J]. Plant Cell and Environment,2019,42(7):2090-2104.
[107]ZHOU H, WANG K L, WANG H L,et al. Molecular genetics of blood-fleshed peach reveals activation of anthocyanin biosynthesis by NAC transcription factors[J]. The Plant Journal,2015,82(1):105-121.
[108]LI C, WU J, HU K D, et al. PyWRKY26 and PybHLH3 cotargeted the PyMYB114 promoter to regulate anthocyanin biosynthesis and transport in red-skinned pears[J]. Horticulture Research,2020,7:37.
[109]WANG Y, ZHANG X, ZHAO Y, et al. Transcription factor PyHY5 binds to the promoters of PyWD40 and PyMYB10 and regulates its expression in red pear ′Yunhongli No. 1′[J]. Plant Physiology and Biochemistry,2020,154:665-674.
[110]JIANG S, SUN Q, ZHANG T, et al. MdMYB114 regulates anthocyanin biosynthesis and functions downstream of MdbZIP4-like in apple fruit[J]. Journal of Plant Physiology,2020,257:153353.
[111]MAO Z, JIANG H, WANG S, et al. The MdHY5-MdWRKY41-MdMYB transcription factor cascade regulates the anthocyanin and proanthocyanidin biosynthesis in red-fleshed apple[J]. Plant Science,2021,306:110848.
[112]SUN Q, JIANG S, ZHANG T, et al. Apple NAC transcription factor MdNAC52 regulates biosynthesis of anthocyanin and proanthocyanidin through MdMYB9 and MdMYB11[J]. Plant Science,2019,289: 110286.
[113]ZHANG T, XU H, YANG G, et al. Molecular mechanism of MYB111 and WRKY40 involved in anthocyanin biosynthesis in red-fleshed apple callus[J]. Plant Cell,Tissue and Organ Culture (PCTOC),2019,139(3):467-478.
[114]ZHANG S, CHEN Y, ZHAO L, et al. A novel NAC transcription factor, MdNAC42, regulates anthocyanin accumulation in red-fleshed apple by interacting with MdMYB10[J]. Tree Physiology,2020,40(3):413-423.
[115]JIANG G X, LI Z W, SONG Y B, et al. LcNAC13 Physically interacts with LcR1MYB1 to coregulate anthocyanin biosynthesis-related genes during litchi fruit ripening[J]. Biomolecules,2019,9(4),135.
[116]贾海锋,刘众杰,赵鹏程,等. 转录因子ABI4调控草莓果实成熟的分子机制[J]. 南京农业大学学报,2015,38(6):908-914.
[117]易勇,郑瑞,杨波,等. 水稻锌指蛋白基因CRISPR/Cas9突变体的构建及突变分析[J].南方农业学报,2020,51(11):2607-2613.
[118]范德佳,陈士强,王建华,等. 利用CRISPR/Cas技术改良作物抗病性的研究进展[J].江苏农业学报,2020,36(5):1312-1321.
[119]李星坤,潘慧,李攀,等.基于CRISPR/Cas9系统的拟南芥ugt84a1/ugt84a2双突变体制作及突变位点分析[J].江苏农业科学,2020,48(20):49-55.
相似文献/References:
[1]田鹏,苏艳丽,康保珊,等.两个红梨品种花色苷合成相关基因及转录因子MYB10 表达模式分析[J].江苏农业学报,2015,(01):166.[doi:10.3969/j.issn.1000-4440.2015.01.026]
TIAN peng,SU Yan-li,KANG Bao-shan,et al.Analyses of expression patterns of transcription factor MYB10 and anthocyanin synthesis genes in two red skin pear varieties[J].,2015,(01):166.[doi:10.3969/j.issn.1000-4440.2015.01.026]
[2]宿子文,蔡志翔,孙朦,等.植物中绿原酸生物合成研究进展[J].江苏农业学报,2023,(06):1414.[doi:doi:10.3969/j.issn.1000-4440.2023.06.018]
SU Zi-wen,CAI Zhi-xiang,SUN Meng,et al.Research progress on biosynthesis of chlorogenic acid in plants[J].,2023,(01):1414.[doi:doi:10.3969/j.issn.1000-4440.2023.06.018]
[3]庞文倩,刘春菊,李大婧,等.热压加工过程中紫玉米花色苷的热降解动力学及色泽变化[J].江苏农业学报,2023,(07):1583.[doi:doi:10.3969/j.issn.1000-4440.2023.07.015]
PANG Wen-qian,LIU Chun-ju,LI Da-jing,et al.Thermal degradation kinetics of anthocyanins and color change in purple corn during hot pressing process[J].,2023,(01):1583.[doi:doi:10.3969/j.issn.1000-4440.2023.07.015]
[4]郭梦鸽,秦孝天,陈瑞丹.6个朱砂梅品种花色苷合成结构基因及转录因子编码基因的表达模式分析[J].江苏农业学报,2024,(02):367.[doi:doi:10.3969/j.issn.1000-4440.2024.02.019]
GUO Meng-ge,QIN Xiao-tian,CHEN Rui-dan.Analysis of the expression pattern of structural genes and transcription factors encoding genes related to the anthocyanin synthesis in six cultivars of Prunus mume Cinnabar Purple Group[J].,2024,(01):367.[doi:doi:10.3969/j.issn.1000-4440.2024.02.019]
[5]徐僡,郑远静,高方平,等.花色苷的生物合成及其影响因素研究进展[J].江苏农业学报,2019,(05):1246.[doi:doi:10.3969/j.issn.1000-4440.2019.05.035]
XU Hui,ZHENG Yuan-jing,GAO Fang-ping,et al.Advances in the biosynthesis and influencing factors of anthocyanins[J].,2019,(01):1246.[doi:doi:10.3969/j.issn.1000-4440.2019.05.035]