[1]陶玥玥,周新伟,金梅娟,等.湿润稻作体系中还田小麦秸秆分解及土壤活性碳变化特征[J].江苏农业学报,2022,38(01):94-101.[doi:doi:10.3969/j.issn.1000-4440.2022.01.011]
 TAO Yue-yue,ZHOU Xin-wei,JIN Mei-juan,et al.Decomposition of returned wheat straw and change characteristics of soil active carbon in water-saturated rice production system[J].,2022,38(01):94-101.[doi:doi:10.3969/j.issn.1000-4440.2022.01.011]
点击复制

湿润稻作体系中还田小麦秸秆分解及土壤活性碳变化特征()
分享到:

江苏农业学报[ISSN:1006-6977/CN:61-1281/TN]

卷:
38
期数:
2022年01期
页码:
94-101
栏目:
耕作栽培·资源环境
出版日期:
2022-02-28

文章信息/Info

Title:
Decomposition of returned wheat straw and change characteristics of soil active carbon in water-saturated rice production system
作者:
陶玥玥12周新伟12金梅娟12施林林12陆长婴12王海候12
(1.江苏太湖地区农业科学研究所,江苏苏州215155;2.国家土壤质量相城观测实验站,江苏苏州215155)
Author(s):
TAO Yue-yue12ZHOU Xin-wei12JIN Mei-juan12SHI Lin-lin12LU Chang-ying12WANG Hai-hou12
(1.Taihu Research Institute of Agricultural Sciences, Suzhou 215155, China;2.National Soil Quality Observation and Experimental Station in Xiangcheng, Suzhou 215155, China)
关键词:
稻麦轮作湿润灌溉小麦秸秆还田秸秆腐解率土壤活性有机碳
Keywords:
rice-wheat rotation systemwater-saturated irrigationwheat straw returningdecomposition rate of wheat strawsoil active organic carbon
分类号:
S155.4
DOI:
doi:10.3969/j.issn.1000-4440.2022.01.011
文献标志码:
A
摘要:
为探求稻田湿润灌溉对还田小麦秸秆腐解特征、土壤有机碳含量及其组分的影响,在太湖稻作区开展2年田间试验,设定秸秆还田与否(小麦秸秆不还田、小麦秸秆还田)和种植体系(常规淹水灌溉、湿润灌溉)双因素试验,采用原位模拟网袋法和土壤有机碳化学分组法测定还田小麦秸秆腐解率,碳、氮、磷、钾释放率以及土壤活性有机碳库和土壤总有机碳的变化。研究结果表明,湿润灌溉体系下还田小麦秸秆腐解率较常规淹水灌溉体系显著增加了12.5%,小麦秸秆碳、氮、磷的释放率分别显著增加了8.9%、9.8%和13.1%。小麦秸秆中钾释放较快,不同种植体系间无显著差异。与常规淹水灌溉体系相比,湿润灌溉体系的土壤活性有机碳含量显著提高,并且在小麦秸秆还田条件下更为明显,土壤微生物量碳有效性和活性有机碳有效性显著提高。与常规淹水灌溉相比,湿润灌溉可促进还田小麦秸秆养分释放以及土壤活性碳库提升,湿润灌溉可作为太湖稻作区可行的灌溉策略。
Abstract:
To investigate the effects of saturated irrigation on the decomposition of wheat straw, soil organic carbon content and its components, a two-year field experiment was carried out in the rice growing area of Taihu Lake region. Two experimental factors of straw returning (with and without wheat straw returning) and rice growing system (traditional flooding and water-saturated irrigation) were included, using the simulated method with net bag in the field and soil organic carbon chemical grouping method, the rate of wheat straw decomposition, the release rates of carbon, nitrogen, phosphorus and potassium and changes of soil active organic carbon pool and total organic carbon were measured. Compared with the conventional flooding system, the decomposition rate of wheat straw in the water-saturated irrigation system was significantly increased by 12.5%, and the release rates of carbon, nitrogen and phosphorus in wheat straw were significantly increased by 8.9%, 9.8% and 13.1%, respectively. Potassium in wheat straw was released faster, and there was no significant difference between different planting systems. The content of soil active organic carbon in water-saturated irrigation system was significantly higher than that in the conventional flooding system, and it was more obvious under wheat straw returning. In addition, the soil microbial biomass carbon availability and active organic carbon availability were significantly improved. Hence, compared with the conventional flooding system, water-saturated irrigation system could promote the nutrient release rate of wheat straw and enhance the soil active carbon pool, which could be used as a feasible irrigation strategy in the rice-growing region of Taihu Lake.

参考文献/References:

[1]LU F, WANG X, HAN B, et al. Soil carbon sequestrations by nitrogen fertilizer application, straw return and no-tillage in China’s cropland[J]. Global Change Biology, 2009, 15 (2): 281-305.
[2]杨滨娟,钱海燕,黄国勤,等. 秸秆还田及其研究进展[J].农学学报, 2012, 2(5): 1-4.
[3]ZAGAL E, MUNOZ C, QUIROZ M, et al. Sensitivity of early indicators for evaluating quality changes in soil organic matter[J]. Geoderma, 2009, 151(3): 191-198.
[4]GUNTIASET M E, LEIROS M C, TRASARC C, et al. Effects of moisture and temperature on net soil nitrogen mineralization: A laboratory study[J]. European Journal of Soil Biology, 2012, 48:73-80.
[5]王海候,金梅娟,陆长婴,等. 秸秆还田模式对农田土壤碳库特性及产量的影响[J].自然资源学报, 2017,32(5):755-764.
[6]RAO D, MIKKELSEN D. Effect of rice straw additions on production of organic acids in flooded soil[J]. Plant and Soil, 1977, 47(2): 303-311.
[7]史然,陈晓娟,沈建林,等. 稻田秸秆还田的土壤增碳及温室气体排放效应和机理研究进展[J].土壤, 2013, 45(2): 193-198.
[8]MA J, MA E, XU H, et al. Wheat straw management affects CH4 and N2O emissions from rice fields[J]. Soil Biology & Biochemistry, 2009, 41(5), 1022-1028.
[9]黄耀,孙文娟. 近20年来中国大陆农田表土有机碳含量的变化趋势[J]. 科学通报, 2006, 51(7): 750-763.
[10]唐国勇,童成立,苏以荣,等. 含水量对14C标记秸秆和土壤原有有机碳矿化的影响[J].中国农业科学, 2006, 39(3): 538-543.
[11]TAO Y Y, QU H, LI Q J, et al. Potential to improve N uptake and grain yield in water saving ground cover rice production system[J]. Field Crops Research, 2014, 168(2): 101-108.
[12]YANG J C, ZHANG J H. Crop management techniques to enhance harvest index in rice[J]. Journal of Experimental Botany, 2010, 61(12): 3177-3189.
[13]TAO Y Y, ZHANG Y, JIN X X, et al. More rice with less water-evaluation of yield and resource use efficiency in ground cover rice production system with transplanting[J]. European Journal of Agronomy, 2015, 68:13-21.
[14]GUO L, LIU M J, TAO Y Y, et al. Innovative water-saving ground cover rice production system increases yield with slight reduction in grain quality[J]. Agricultural Systems, 2020, 180(3): 102795.
[15]LIANG H, HU K L, QIN W, et al. Ground cover rice production system reduces water consumption and nitrogen loss and increases water and nitrogen use efficiencies[J]. Field Crops Research, 2019, 233: 70-79.
[16]YAO Z S, DU Y B, TAO Y Y, et al. Water-saving ground cover rice production system reduces net greenhouse gas fluxes in an annual rice-based cropping system[J]. Biogeosciences Discussions, 2014, 11: 8925-8967.
[17]王孟雪,张忠学. 适宜节水灌溉模式抑制寒地稻田N2O排放增加水稻产量[J].农业工程学报, 2015,31(15): 72-79.
[18]姚林,郑华斌,刘建霞,等. 中国水稻节水灌溉技术的现状及发展趋势[J].生态学杂志, 2014,33(5): 1381-1387.
[19]武际,郭熙盛,王允青,等. 不同水稻栽培模式和秸秆还田方式下的油菜、小麦秸秆腐解特征[J]. 中国农业科学, 2011,44(16): 3351-3360.
[20]鲍士旦. 土壤农化分析[M]. 北京: 中国农业出版社, 2002:25-38.
[21]吴金水,林启美,黄巧云,等. 土壤微生物生物量测定方法及其应用[M]. 北京:气象出版社,2006:54-60.
[22]BLAIR G J. Soil carbon fractions based on their degree of oxidation, and the development of a carbon management index for agricultural systems[J]. Australian Journal of Agricultural Research, 1995, 46(7): 393-406.
[23]黄燕,吴平.SAS统计分析及应用[M].北京:机械工业出版社,2005:103-125.
[24]戴志刚,鲁剑巍,李小坤,等. 不同作物还田秸秆的养分释放特征试验[J].农业工程学报, 2010, 26(6):272-276.
[25]JENKINSON D S, AYANABA A. Decomposition of carbon-14 labeled plant material under tropical conditions[J]. Soil Science Society of America Journal, 1977, 41(5): 912-915.
[26]LI Y S, WU L H, ZHAO L M, et al. Influence of continuous plastic film mulching on yield, water use efficiency and soil properties of rice fields under non-flooding condition[J]. Soil & Tillage Research, 2007, 93(2): 370-378.
[27]马南,陈智文,张清.不同类型秸秆还田对土壤有机碳及酶活性的影响综述[J].江苏农业科学,2021,49(3):53-57.
[28]赵亚慧,贺笑,王宁,等.不同理化调控措施缓解麦秸对水稻生长负面效应[J].江苏农业科学,2020,48(18):300-305.
[29]WU J. Carbon accumulation in paddy ecosystems in subtropical China: evidence from landscape studies[J]. European Journal of Soil Science, 2011, 62: 29-34.
[30]PAN G X, LI L Q, WU L S, et al. Storage and sequestration potential of topsoil organic carbon in China’s paddy soils[J]. Global Change Biology, 2004, 10(1): 79-92.
[31]马俊永,李科江,曹彩云,等. 有机-无机肥长期配施对潮土土壤肥力和作物产量的影响[J].植物营养与肥料学报, 2007, 13(2): 236-241.
[32]HUQ S, GRUBB M. Mitigation and adaptation strategies for global change: Preface[J]. Mitigation and Adaptation Strategies for Global Change, 2007, 12(5): 645-649.
[33]HENRIKEN T, BRELAND T. Carbon mineralization, fungal and bacterial growth, and enzyme activities as affected by contact between crop residues and soil[J]. Biology & Fertility of Soils, 2002, 35(1): 41-48.
[34]COOKSON W, ABAYE D, MARSCHENER P, et al. The contribution of soil organic matter fractions to carbon and nitrogen mineralization and microbial community size and structure[J]. Soil Biology & Biochemistry, 2005, 37(9): 1726-1737.
[35]PAN G X, XU X W, SMITH P, et al. An increase in topsoil SOC stock of China’s croplands between 1985 and 2006 revealed by soil monitoring[J]. Agriculture Ecosystems & Environment, 2010, 136(S1/S2): 133-138.
[36]WITT C, CASSMAN K, OLK D, et al. Crop rotation and residue management effects on carbon sequestration, nitrogen cycling and productivity of irrigated rice systems[J]. Plant and Soil, 2000, 225(1): 263-278.
[37]OLK D, CASSMAN K, SCHNIDTROHR K, et al. Chemical stabilization of soil organic nitrogen by phenolic lignin residues in anaerobic agroecosystems[J]. Soil Biology & Biochemistry, 2006, 38(11): 3303-3312.
[38]潘根兴,赵其国. 我国农田土壤碳库演变研究: 全球变化和国家粮食安全[J].地球科学进展, 2005, 20(4):384-393.
[39]陈晓侠,梁爱珍,张晓平. 土壤团聚体固碳的研究方法[J].应用生态学报, 2012, 23(7): 1999-2006.

相似文献/References:

[1]孙小祥,常志州,靳红梅,等.太湖地区不同秸秆还田方式对作物产量与经济效益的影响[J].江苏农业学报,2017,(01):94.[doi:10.3969/j.issn.1000-4440.2017.01.015 ]
 SUN Xiao-xiang,CHANG Zhi-zhou,JIN Hong-mei,et al.Influence of different ways of straw incorporation on crop yield and economic benefit in the Taihu Lake Basin[J].,2017,(01):94.[doi:10.3969/j.issn.1000-4440.2017.01.015 ]
[2]王夏雯,余翔,乔俊卿,等.西瓜茬后种植稻麦对土壤微生物数量和西瓜枯萎病发生的影响[J].江苏农业学报,2015,(06):1291.[doi:doi:10.3969/j.issn.1000-4440.2015.06.015]
 WANG Xia-wen,YU Xiang,QIAO Jun-qing,et al.Effect of rice-wheat rotation after watermelon season on the amount of soil microbes and the incidence of Fusarium wilt[J].,2015,(01):1291.[doi:doi:10.3969/j.issn.1000-4440.2015.06.015]
[3]张霞,李健,潘孝青,等.不同熟化垫料替代比例对稻麦轮作下作物产量、土壤肥力及重金属的影响[J].江苏农业学报,2021,(05):1175.[doi:doi:10.3969/j.issn.1000-4440.2021.05.012]
 ZHANG Xia,LI Jian,PAN Xiao-qing,et al.Effects of different proportions of spent litters on crop yield, soil fertility and heavy metals in rice-wheat rotation[J].,2021,(01):1175.[doi:doi:10.3969/j.issn.1000-4440.2021.05.012]
[4]田帅,单旭东,程启鹏,等.巢湖流域典型稻麦轮作区大气氮磷沉降及对巢湖影响的分析[J].江苏农业学报,2022,38(04):958.[doi:doi:10.3969/j.issn.1000-4440.2022.04.012]
 TIAN Shuai,SHAN Xu-dong,CHENG Qi-peng,et al.Analysis of atmospheric nitrogen and phosphorus deposition and its impact on Chao Lake in typical rice-wheat rotation area of Chao Lake basin[J].,2022,38(01):958.[doi:doi:10.3969/j.issn.1000-4440.2022.04.012]

备注/Memo

备注/Memo:
收稿日期:2021-04-30基金项目:国家自然科学基金项目(32101854);江苏省农业科技自主创新基金项目[CX21(3097)];苏州市农业科技项目(SNG2020051)作者简介:陶玥玥(1986-),女,江苏大丰人,博士,副研究员,主要从事农田种植制度与养分管理等相关研究。(E-mail)twhhltyy@163.com通讯作者:王海候,(E-mail)wanghaihou@126.com
更新日期/Last Update: 2022-03-04