[1]马锐豪,樊伟,王斐,等.不同林分类型叶片稳定碳、氮同位素的变化特征[J].江苏农业学报,2022,38(01):102-110.[doi:doi:10.3969/j.issn.1000-4440.2022.01.012]
 MA Rui-hao,FAN Wei,WANG Fei,et al.Variation characteristics of stable carbon and stable nitrogen isotopes in leaves of different forest types[J].,2022,38(01):102-110.[doi:doi:10.3969/j.issn.1000-4440.2022.01.012]
点击复制

不同林分类型叶片稳定碳、氮同位素的变化特征()
分享到:

江苏农业学报[ISSN:1006-6977/CN:61-1281/TN]

卷:
38
期数:
2022年01期
页码:
102-110
栏目:
耕作栽培·资源环境
出版日期:
2022-02-28

文章信息/Info

Title:
Variation characteristics of stable carbon and stable nitrogen isotopes in leaves of different forest types
作者:
马锐豪樊伟王斐夏开温正宇徐小牛
(安徽农业大学林学与园林学院,安徽合肥230036)
Author(s):
MA Rui-haoFAN WeiWANG FeiXIA KaiWEN Zheng-yuXU Xiao-niu
(School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei 230036, China)
关键词:
稳定碳、氮同位素林型叶龄营养元素
Keywords:
stable carbon and stable nitrogen isotopesforest typefoliar agenutrient element
分类号:
S718.3
DOI:
doi:10.3969/j.issn.1000-4440.2022.01.012
文献标志码:
A
摘要:
为了解各种生物及非生物因素对植物叶片稳定碳、氮同位素含量的影响,研究了蔡家桥林场内马尾松次生林(PM-SF)、湿地松人工林(PE-P)及杉木人工林(CL-P),不同叶龄叶片的养分(C、N、P、K、Ca、Mg)含量及其化学计量比与稳定碳同位素(δ13C)、稳定氮同位素(δ15N)含量的关系,探讨植物叶片δ13C、δ15N含量变异特征。结果表明,各林型叶片δ13C含量随叶龄变化不显著,叶片δ15N含量随叶龄的增大而减小。总体上,马尾松次生林叶片δ13C、δ15N含量均高于湿地松人工林及杉木人工林。多元回归分析结果表明,叶片养分含量、叶龄和林型的共同影响分别解释叶片δ13C、δ15N含量变化的83.94%和83.00%。相关性分析结果表明,叶片δ13C含量与N含量呈显著正相关关系,与C含量/N含量呈显著负相关关系;δ15N含量与N、P、K含量呈显著正相关关系,与Ca含量、C含量/N含量呈显著负相关关系。总体来看,植物叶片对碳、氮同位素的分馏受林分类型、叶龄、营分元素含量等多种因素的影响,不同林型条件下,环境和养分因子的变化在一定程度上反映并影响了植物叶片δ13C、δ15N含量的变化特征。
Abstract:
In order to understand the effects of various biotic and abiotic factors on contents of stable carbon isotope and stable nitrogen isotope in plant leaves, the relationship between nutrients (C, N, P, K, Ca, Mg) contents and their stoichiometric ratios and the contents of stable carbon isotope (δ13C) and stable nitrogen isotope (δ15N) in leaves at different foliar ages of Pinus massoniana secondary forest (PM-SF), Pinus elliottii artificial forest (PE-P) and Cunninghamia lanceolata artificial forest (CL-P) in Caijiaqiao Forest Farm were analyzed, and the variation characteristics of δ13C and δ15N contents in plant leaves were discussed. The results showed that, with the change of foliar ages, the change of foliar δ13C contents of different forest types was not significant, but the foliar δ15N content of different forest types decreased with the increase of foliar age. The foliar δ13C and δ15N contents of Pinus massoniana secondary forest were higher than those of the two artificial forests on the whole. Multiple regression analysis suggested that, the combined effects of foliar nutrient contents, foliar age and forest type could explain 83.94% and 83.00% of the foliar δ13C and δ15N contents, respectively. Results of the correlation analysis showed that, the foliar δ13C content was in significant positive correlation with N content, and was in significant negative correlation with the ratio of C content and N content; the foliar δ15N content was in significant positive correlation with N content, P content and K content, and was in significant negative correlation with Ca content, C content and the ratio of C content and N content. In conclusion, the fractionation of carbon and nitrogen isotopes in plant leaves is affected by multiple factors including forest type, foliar age and contents of nutrient elements, and the variation of environmental and nutrient factors can reflect and affect the change properties of foliar δ13C and δ15N contents to some extent under different forest types.

参考文献/References:

[1]GATICA M G, ARANIBAR J N, PUCHETA E. Environmental and species-specific controls on δ13C and δ15N in dominant woody plants from central-western Argentinian drylands[J]. Austral Ecology, 2017, 42(5): 533-543.
[2]葛露露,孟庆权,林宇,等. 滨海沙地不同树种人工林叶片和土壤表层稳定碳氮同位素及水分利用效率研究[J]. 西北植物学报, 2018, 38(3): 544-552.
[3]PERAKIS S S, TEPLEY A J, COMPTON J E. Disturbance and topography shape nitrogen availability and δ15N over long-term forest succession[J]. Ecosystems, 2015, 18(4): 573-588.
[4]LI C, WU C, DUAN B, et al. Age-related nutrient content and carbon isotope composition in the leaves and branches of Quercus aquifolioides along an altitudinal gradient[J]. Trees, 2009, 23(5): 1109-1121.
[5]赵维俊,刘贤德,金铭,等. 祁连山青海云杉林叶片-枯落物-土壤的碳氮磷生态化学计量特征[J]. 土壤学报, 2016, 53(2): 477-489.
[6]张秋芳,谢锦升,陈奶寿,等. 生态恢复对马尾松叶片化学计量及氮磷转移的影响[J]. 生态学报, 2017, 37(1): 267-276.
[7]BURNHAM M B, ADAMS M B, PETERJOHN W T. Assessing tree ring delta δ15N of four temperate deciduous species as an indicator of N availability using independent long-term records at the Fernow Experimental Forest, WV[J]. Oecologia, 2019, 191(4): 971-981.
[8]王宝荣,曾全超,安韶山,等. 黄土高原子午岭林区两种天然次生林植物叶片-凋落叶-土壤生态化学计量特征[J]. 生态学报, 2017, 37(16): 5461-5473.
[9]CAO Y, CHEN Y. Coupling of plant and soil C∶N∶P stoichiometry in black locust (Robinia pseudoacacia) plantations on the Loess Plateau, China[J]. Trees, 2017, 31(5): 1559-1570.
[10]WANG Q, LI F, RONG X, et al. Plant-soil properties associated with nitrogen mineralization: Effect of conversion of natural secondary forests to larch plantations in a headwater catchment in Northeast China[J]. Forests, 2018, 9(7): 386.
[11]KEELING R F, GRAVEN H D, WELP L R, et al. Atmospheric evidence for a global secular increase in carbon isotopic discrimination of land photosynthesis[J]. Proceedings of The National Academy of Sciences of The United States of America, 2017, 114(39): 10361-10366.
[12]哈丽古丽·艾尼,伊丽米努尔,管文轲,等. 不同生境胡杨叶片δ13C和δ15N及其对环境因子的响应[J]. 西北植物学报, 2020, 40(6): 1031-1042.
[13]熊鑫,张慧玲,吴建平,等. 鼎湖山森林演替序列植物-土壤碳氮同位素特征[J]. 植物生态学报, 2016, 40(6): 533-542.
[14]KIKUZAWA K, LECHOWICZ M J. Quantifying leaf longevity[M]. Tokyo: Springer, 2011:23-29.
[15]BARREZUETA UNDA S, PAZ GONZLEZ A, LUNA ROMERO  E, et al. Variability of δ13C and δ15N in cocoa cultivars, in the province of El Oro, Ecuador [J]. Terra Latinoamericana, 2019, 37(2): 131-140.
[16]葛体达,王东东,祝贞科,等. 碳同位素示踪技术及其在陆地生态系统碳循环研究中的应用与展望[J]. 植物生态学报, 2020, 44(4): 360-372.
[17]郜士垒,何宗明,黄志群,等. 杉木宿存叶片的分解及稳定性碳氮同位素和化学组成[J]. 生态学杂志, 2015, 34(9): 2457-2463.
[18]JIA Y, WANG G, TAN Q, et al. Temperature exerts no influence on organic matter δ13C of surface soil along the 400 mm isopleth of mean annual precipitation in China[J]. Biogeosciences, 2016, 13(17): 5057-5064.
[19]刘建锋,张玉婷,倪妍妍,等. 栓皮栎叶片δ13C和δ15N的纬向趋势及其影响因子[J]. 应用生态学报, 2018, 29(5): 1373-1380.
[20]CERNUSAK L A, TCHERKEZ G, KEITEL C, et al. Viewpoint: Why are non-photosynthetic tissues generally 13C enriched compared with leaves in C3 plants? Review and synthesis of current hypotheses[J]. Functional Plant Biology, 2009, 36(3): 199-213.
[21]LI C, WANG B, CHEN T, et al. Leaf age compared to tree age plays a dominant role in leaf δ13C and δ15N of Qinghai Spruce (Picea crassifolia Kom.)[J]. Forests, 2019, 10(4): 310.
[22]GERSCHLAUER F, SAIZ G, SCHELLENBERGER COSTA D, et al. Stable carbon and nitrogen isotopic composition of leaves, litter, and soils of various ecosystems along an elevational and land-use gradient at Mount Kilimanjaro, Tanzania[J]. Biogeosciences, 2019, 16(2): 409-424.
[23]FAN R, MOROZUMI T, MAXIMOV T C, et al. Effect of floods on the δ13C values in plant leaves: a study of willows in Northeastern Siberia[J]. Peer J, 2018, 6: e5374.
[24]张金美,张萌,匡武名,等. 水华条件下鄱阳湖区植物叶片碳氮同位素特性[J]. 环境科学研究, 2016, 29(5): 708-715.
[25]董雪,李永华,辛智鸣,等. 唐古特白刺叶性状及叶片δ13C、δ15N沿降水梯度的变化特征[J]. 生态学报, 2019, 39(10): 3700-3709.
[26]BAI S H, DEMPSEY R, REVERCHON F, et al. Effects of forest thinning on soil-plant carbon and nitrogen dynamics[J]. Plant and Soil, 2016, 411(1/2): 437-449.
[27]QIU S, BELL R W, HOBBS R J, et al. Overstorey and juvenile response to thinning and drought in a jarrah (Eucalyptus marginata Donn ex Sm.) forest of southwestern Australia[J]. Plant and Soil, 2012, 365(1/2): 291-305.
[28]HOGBERG P, JOHANNISSON C, YARWOOD S, et al. Recovery of ectomycorrhiza after ′nitrogen saturation of a conifer forest[J]. New Phytol, 2011, 189(2): 515-525.
[29]CRAINE J M, BROOKSHIRE E N J, CRAMER M D, et al. Ecological interpretations of nitrogen isotope ratios of terrestrial plants and soils[J]. Plant and Soil, 2015, 396(1/2): 1-26.
[30]方运霆,刘冬伟,朱飞飞,等. 氮稳定同位素技术在陆地生态系统氮循环研究中的应用[J]. 植物生态学报, 2020, 44(4): 373-383.
[31]YAN T, L X T, ZHU J J, et al. Changes in nitrogen and phosphorus cycling suggest a transition to phosphorus limitation with the stand development of larch plantations[J]. Plant and Soil, 2017, 422(1/2): 385-396.
[32]TIAN D, YAN Z, NIKLAS K J, et al. Global leaf nitrogen and phosphorus stoichiometry and their scaling exponent[J]. National Science Review, 2018, 5(5): 728-739.
[33]蒋龙,徐振锋,吴福忠,等. 亚热带3种典型常绿森林土壤和植物叶片碳氮磷化学计量特征[J]. 应用与环境生物学报, 2019, 25(4): 759-767.
[34]WALIA A, GUY R D, WHITE B. Carbon isotope discrimination in western hemlock and its relationship to mineral nutrition and growth[J]. Tree Physiol, 2010, 30(6): 728-740.
[35]GE J, XIE Z. Leaf litter carbon, nitrogen, and phosphorus stoichiometric patterns as related to climatic factors and leaf habits across Chinese broad-leaved tree species[J]. Plant Ecology, 2017, 218(9): 1063-1076.
[36]司高月,李晓玉,程淑兰,等. 长白山垂直带森林叶片-凋落物-土壤连续体有机碳动态——基于稳定性碳同位素分析[J]. 生态学报, 2017, 37(16): 5285-5293.
[37]GAUTAM M K, LEE K S, SONG B Y, et al. Early-stage changes in natural 13C and 15N abundance and nutrient dynamics during different litter decomposition[J]. Journal of Plant Research, 2016, 129(3): 463-476.
[38]PANG Y, TIAN J, ZHAO X, et al. The linkages of plant, litter and soil C∶N∶P stoichiometry and nutrient stock in different secondary mixed forest types in the Qinling Mountains, China[J]. Peer J, 2020, 8: e9274.
[39]TONG R, ZHOU B, JIANG L, et al. Leaf nitrogen and phosphorus stoichiometry of Chinese fir plantations across China: A meta-analysis[J]. Forests, 2019, 10(11): 945.
[40]VERBOOM G A, STOCK W D, CRAMER M D. Specialization to extremely low-nutrient soils limits the nutritional adaptability of plant lineages[J]. The American Naturalist, 2017, 189(6): 684-699.
[41]ACHAT D L, POUSSE N, NICOLAS M, et al. Nutrient remobilization in tree foliage as affected by soil nutrients and leaf life span[J]. Ecological Monographs, 2018, 88(3): 408-428.
[42]CHEN C, WU Y, WANG S, et al. Relationships between leaf δ15N and leaf metallic nutrients[J]. Rapid Communications in Mass Spectrometry, 2021, 35(2): e8970.
[43]李善家,张有福,陈拓. 西北油松叶片δ13C特征与环境因子和叶片矿质元素的关系[J]. 植物生态学报, 2011, 35(6): 596-604.

备注/Memo

备注/Memo:
收稿日期:2021-03-24基金项目:国家“十三五”重点研发计划项目(2016YFD0600304-03);国家自然科学基金项目(31770672、31370626)作者简介:马锐豪(1997-),男,河南许昌人,硕士研究生,主要研究方向为森林培育学。(E-mail)marh0407@163.com通讯作者:徐小牛,(E-mail)xnxu2007@ahau.edu.cn
更新日期/Last Update: 2022-03-04