[1]田帅,单旭东,程启鹏,等.巢湖流域典型稻麦轮作区大气氮磷沉降及对巢湖影响的分析[J].江苏农业学报,2022,38(04):958-966.[doi:doi:10.3969/j.issn.1000-4440.2022.04.012]
 TIAN Shuai,SHAN Xu-dong,CHENG Qi-peng,et al.Analysis of atmospheric nitrogen and phosphorus deposition and its impact on Chao Lake in typical rice-wheat rotation area of Chao Lake basin[J].,2022,38(04):958-966.[doi:doi:10.3969/j.issn.1000-4440.2022.04.012]
点击复制

巢湖流域典型稻麦轮作区大气氮磷沉降及对巢湖影响的分析()
分享到:

江苏农业学报[ISSN:1006-6977/CN:61-1281/TN]

卷:
38
期数:
2022年04期
页码:
958-966
栏目:
耕作栽培·资源环境
出版日期:
2022-08-31

文章信息/Info

Title:
Analysis of atmospheric nitrogen and phosphorus deposition and its impact on Chao Lake in typical rice-wheat rotation area of Chao Lake basin
作者:
田帅1单旭东1程启鹏1徐刚1郜红建1华胜2高时凤3
(1.安徽农业大学资源与环境学院/农田生态保育与污染防控安徽省重点实验室,安徽合肥230036;2.安徽喜洋洋农业科技有限公司,安徽庐江230088;3.庐江县白山镇农业技术推广服务站,安徽庐江231531)
Author(s):
TIAN Shuai1SHAN Xu-dong1CHENG Qi-peng1XU Gang1GAO Hong-jian1HUA Sheng2GAO Shi-feng3
(1.School of Resources and Environment, Anhui Agricultural University/Anhui Provincial Key Laboratory of Farmland Ecological Conservation and Pollution Prevention, Hefei 230036, China;2.Anhui Xiyangyang Agricultural Science and Technology Co., Ltd., Lujiang 230088, China;3.Agricultural Technology Extension Service Station of Baishan Town of Lujiang County, Lujiang 231531, China)
关键词:
巢湖流域稻麦轮作氮磷沉降农田生态系统巢湖水体
Keywords:
Chao Lake basinrice-wheat rotationnitrogen and phosphorus depositionfarmland ecosystemChao Lake water body
分类号:
X529
DOI:
doi:10.3969/j.issn.1000-4440.2022.04.012
文献标志码:
A
摘要:
为研究巢湖流域典型稻麦轮作区大气氮磷沉降特征及其生态环境效应,选择巢湖流域典型稻麦轮作区布设大气氮磷沉降监测点,收集大气沉降样品进行氮磷质量浓度、沉降通量及输入特征分析。结果表明,监测期内大气总氮(TN)、总磷(TP)年沉降通量分别为98.22 kg/hm2、3.27 kg/hm2,其中TN沉降以可溶性有机氮(DON)为主,占TN沉降总量的49.56%,而可溶性无机氮(DIN)则以NH+4-N(14.48 kg/hm2)为主,NO-3-N含量相对较低(5.85 kg/hm2)。TP沉降以可溶性无机磷(DIP)(2.36 kg/hm2)为主,可溶性有机磷(DOP)含量较低。水稻季(6-10月)、小麦季(11月至次年5月)大气TN沉降通量分别为45.84 kg/hm2、52.38 kg/hm2,分别相当于当季氮肥施用量的20%、23%。据此估算,巢湖湖面大气TN和TP年沉降量分别为7 661.16 t和255.06 t,分别占巢湖主要河流入湖负荷的48.41%和32.57%。综上所述,巢湖流域典型稻麦轮作区大气氮磷沉降是农田生态系统和巢湖水体氮磷输入的重要来源。
Abstract:
To study the characteristics of atmospheric nitrogen and phosphorus deposition and its effects on ecological environment in typical rice-wheat rotation area of Chao Lake basin, monitoring and testing sites for atmosphere nitrogen and phosphorus deposition were laid in the area to collect atmospheric deposition samples to analyze the mass concentration, deposition fluxes and input characteristics of nitrogen and phosphorus. The results showed that, annual deposition fluxes of total nitrogen (TN) and total phosphorus (TP) in the monitoring period were 98.22 kg/hm2 and 3.27 kg/hm2, respectively. Atmospheric TN deposition was dominated by dissolved organic nitrogen (DON), which accounted for 49.56% of the total TN deposition, while dissolved inorganic nitrogen (DIN) was dominated by NH+4-N (14.48 kg/hm2), and content of NO-3-N was relatively low (5.85 kg/hm2). Atmospheric TP deposition was dominated by dissolved inorganic phosphorus (DIP) (2.36 kg/hm2), and content of dissolved organic phosphorus (DOP) was low. The TN deposition fluxes in rice season (from June to October) and wheat season (from November to May in the next year) were 45.84 kg/hm2 and 52.38 kg/hm2, respectively, which accounted for 20% and 23% respectively of the total nitrogen fertilizer application in the current season. It was estimated that, the annual atmospheric TN deposition and TP deposition on the Chao Lake surface were 7 661.16 t and 255.06 t, respectively, which accounted for 48.41% and 32.57% of TN and TP inputs from main rivers entry to the lake. It can be seen that, nitrogen and phosphorus deposition in typical rice-wheat rotation area of Chao Lake basin is the important source of nitrogen and phosphorus input to the farmland ecosystem and the water body of Chao Lake.

参考文献/References:

[1]GALLOWAY J N, TOWNSEND A R, ERISMAN J W, et al. Transformation of the nitrogen cycle: recent trends, questions, and potential solutions[J]. Science, 2008, 320(5878): 889-892.
[2]JU X T, XING G X, CHEN X P, Reducing environmental risk by improving N management in intensive Chinese agricultural systems[J]. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106(9): 3041-3046.
[3]GAO Y, JIA Y, YU G, et al. Anthropogenic reactive nitrogen deposition and associated nutrient limitation effect on gross primary productivity in inland water of China[J]. Journal of Cleaner Production, 2019, 208: 530-540.
[4]JIAN C, ZHOU J, PENG Y, et al. Atmospheric wet deposition of nitrogen and sulfur to a typical red soil agroecosystem in Southeast China during the ten-year monsoon seasons (2003–2012)[J]. Atmospheric Environment, 2014, 82: 121-129.
[5]CLARK C M, TILMAN D. Loss of plant species after chronic low-level nitrogen deposition to prairie grasslands[J]. Nature, 2008, 451(7179): 712-715.
[6]MEUNIER C L, GUNDALE M J, SANCHEZ I S, et al. Impact of nitrogen deposition on forest and lake food webs in nitrogen‐limited environments[J]. Global Change Biology, 2016, 22(1): 164-179.
[7]GAO Y, HAO Z, YANG T T, et al. Effects of atmospheric reactive phosphorus deposition on phosphorus transport in a subtropical watershed: a Chinese case study[J]. Environmental Pollution, 2017, 226: 69-78.
[8]HE C E, WANG X, LIU X, et al. Nitrogen deposition and its contribution to nutrient inputs to intensively managed agricultural ecosystems[J]. Ecological Applications, 2010, 20(1): 80-90.
[9]WANG Z, ZHANG X Y, LIU L, et al. Evaluating the effects of nitrogen deposition on rice ecosystems across China[J]. Agriculture, Ecosystems & Environment, 2019, 285: 106617.
[10]ZHANG Y, LIU C, LIU X J, et al. Atmospheric nitrogen deposition around the Dongting Lake, China[J]. Atmospheric Environment, 2019, 207: 197-204.
[11]XIE Y X, XIONG Z Q, XING G X, et al. Source of nitrogen in wet deposition to a rice agroecosystem at Tai lake region[J]. Atmospheric Environment, 2008, 42(21): 5182-5192.
[12]卢俊平,马太玲,张晓晶,等. 典型沙源区水库大气氮干、湿沉降污染特征研究[J]. 农业环境科学学报, 2015, 34(12): 2357-2363.
[13]安徽省统计局. 安徽统计年鉴2020[M]. 北京: 中国统计出版社, 2020.
[14]魏东霞,李璇,赵禹恒,等. 合肥科学岛大气氮磷沉降及对巢湖影响的分析[J]. 合肥工业大学学报(自然科学版), 2018,41(9): 1259-1266.
[15]朱潇,王杰飞,沈健林,等. 亚热带农田和林地大气氮湿沉降与混合沉降比较[J]. 环境科学, 2018, 39(6): 2557-2565.
[16]XU W, ZHAO Y H, LIU X J, et al. Atmospheric nitrogen deposition in the Yangtze River basin: spatial pattern and source attribution[J]. Environmental Pollution,2018, 232: 546-555.
[17]刘冬碧,张小勇,巴瑞先,等. 鄂西北丹江口库区大气氮沉降[J]. 生态学报, 2015, 35(10): 3419-3427.
[18]任加国,贾海斌,焦立新,等. 滇池大气沉降氮磷形态特征及其入湖负荷贡献[J]. 环境科学, 2019, 40(2): 582-589.
[19]杨龙元,秦伯强,胡维平,等. 太湖大气氮、磷营养元素干湿沉降率研究[J]. 海洋与湖沼, 2007(2): 104-110.
[20]刘涛,杨柳燕,胡志新,等. 太湖氮磷大气干湿沉降时空特征[J]. 环境监测管理与技术, 2012, 24(6): 20-24.
[21]TI C P, GAO B, LUO Y X, et al. Dry deposition of N has a major impact on surface water quality in the Taihu Lake region in southeast China[J]. Atmospheric Environment, 2018, 190: 1-9.
[22]王江飞,周柯锦,汪小泉,等. 杭嘉湖地区大气氮、磷沉降特征研究[J]. 中国环境科学, 2015, 35(9): 2754-2763.
[23]王体健,刘倩,赵恒,等. 江西红壤地区农田生态系统大气氮沉降通量的研究[J]. 土壤学报, 2008,45(2): 280-287.
[24]彭畅,牛红红,李强,等. 吉林省中部农田生态系统降雨湿沉降氮特征[J]. 土壤通报, 2015, 46(4): 955-961.
[25]刘文竹,王晓燕,樊彦波. 大气氮沉降及其对水体氮负荷估算的研究进展[J]. 环境污染与防治, 2014, 36(5): 88-93.
[26]郑祥洲,张玉树,丁洪,等. 闽西北农田生态系统中大气氮湿沉降研究[J]. 水土保持学报, 2012, 26(3): 127-130.
[27]SUN L Y, WU Z, MA Y C, et al. Ammonia volatilization and atmospheric N deposition following straw and urea application from a rice-wheat rotation in southeastern China[J]. Atmospheric Environment, 2018, 181: 97-105.
[28]朱小红,马中文,马友华,等. 施肥对巢湖流域稻季氨挥发损失的影响[J]. 生态学报, 2012, 32(7): 2119-2126.
[29]LIU X J, JU X T, ZHANG Y, et al. Nitrogen deposition in agroecosystems in the Beijing area[J]. Agriculture, Ecosystems and Environment, 2006,113(1): 370-377.
[30]ZHANG Y, SONG L, LIU X J, et al. Atmospheric organic nitrogen deposition in China[J]. Atmospheric Environment, 2012, 46: 195-204.
[31]SOLINGER S, MATZNER K E. Controls on the dynamics of dissolved organic carbon and nitrogen in a Central European deciduous forest[J]. Biogeochemistry, 2001, 55(3): 327-349.
[32]GALLOWAY M M, CHHABRA P S, CHAN A W H, et al. Glyoxal uptake on ammonium sulphate seed aerosol: reaction products and reversibility of uptake under dark and irradiated conditions[J]. Atmospheric Chemistry and Physics, 2009, 9(169): 3331-3345.
[33]PERRING A E, PUSEDE S E, COHEN R C. An observational perspective on the atmospheric impacts of alkyl and multifunctional nitrates on ozone and secondary organic aerosol[J]. Chemical reviews, 2013,113(8): 5848-5870.
[34]ANEJA V P, ROELLE P A, MURRAY G C, et al. Atmospheric nitrogen compounds Ⅱ: emissions, transport, transformation, deposition and assessment[J]. Atmospheric Environment, 2001,35(11): 1903-1911.
[35]郑利霞,刘学军,张福锁. 大气有机氮沉降研究进展[J]. 生态学报, 2007,27(9): 3828-3834.
[36]YU X, LI D J, LI D, et al. Enhanced wet deposition of water-soluble organic nitrogen during the harvest season: influence of biomass burning and in-cloud scavenging[J]. Journal of Geophysical Research: Atmospheres, 2020, 125(18): e2020JD032699.
[37]CORNELL S E. Atmospheric nitrogen deposition: revisiting the question of the importance of the organic component[J]. Environmental Pollution, 2011, 159(10): 2214-2222.
[38]叶雪梅,郝吉明,段雷,等. 中国主要湖泊营养氮沉降临界负荷的研究[J]. 环境污染与防治, 2002(1): 54-58.
[39]KONG X Z, DONG L, HE W, et al. Estimation of the long-term nutrient budget and thresholds of regime shift for a large shallow lake in China[J]. Ecological Indicators, 2015, 52: 231-244.
[40]祁国华,马晓双,何诗瑜,等. 基于多源遥感数据的巢湖水华长时序时空变化(2009—2018年)分析与发生概率预测[J]. 湖泊科学, 2021, 33(2): 414-427.
[41]张民,史小丽,阳振,等. 太湖和巢湖中微囊藻(Microcystis)与长孢藻(Dolichospermum)的长时序变化及其驱动因子[J]. 湖泊科学, 2021, 33(4): 1051-1061.
[42]WAN L L, CHEN X Y, DENG Q H, et al. Phosphorus strategy in bloom-forming cyanobacteria (Dolichospermum and Microcystis ) and its role in their succession[J]. Harmful Algae, 2019, 84: 46-55.
[43]钱善勤,孔繁翔,张民,等. 铜绿微囊藻和蛋白核小球藻对不同形态有机磷的利用及其生长[J]. 湖泊科学, 2010, 22(3): 411-415.
[44]王锦旗,宋玉芝,黄进. 大气氮沉降对流域总贡献量估算方法研究[J].江苏农业科学,2020,48(11):246-250.
[45]张晓曦,胡嘉伟,王丽洁,等.不同林龄刺槐林地凋落物分解及养分释放对氮沉降的响应差异[J].植物资源与环境学报,2021,30(6):10-18.
[46]LI W, LI B G, TAO S, et al. Source identification of particulate phosphorus in the atmosphere in Beijing[J]. Science of The Total Environment, 2020, 762: 143174.
[47]NASHOLM T, KIELLAND K, GANETEG U. Uptake of organic nitrogen by plants[J]. The New Phytologist, 2009, 182(1): 31-48.
[48]GAO Y, ZHOU F, CIAIS P, et al. Human activities aggravate nitrogen-deposition pollution to inland water over China[J]. National Science Review, 2020, 7(2): 430-440.
[49]GROSS A, NISHRI A, ANGERT A. Use of phosphate oxygen isotopes for identifying atmospheric-P sources: a case study at Lake Kinneret[J]. Environmental Science & Technology, 2013, 47(6): 2721-2727.

相似文献/References:

[1]孙小祥,常志州,靳红梅,等.太湖地区不同秸秆还田方式对作物产量与经济效益的影响[J].江苏农业学报,2017,(01):94.[doi:10.3969/j.issn.1000-4440.2017.01.015 ]
 SUN Xiao-xiang,CHANG Zhi-zhou,JIN Hong-mei,et al.Influence of different ways of straw incorporation on crop yield and economic benefit in the Taihu Lake Basin[J].,2017,(04):94.[doi:10.3969/j.issn.1000-4440.2017.01.015 ]
[2]王夏雯,余翔,乔俊卿,等.西瓜茬后种植稻麦对土壤微生物数量和西瓜枯萎病发生的影响[J].江苏农业学报,2015,(06):1291.[doi:doi:10.3969/j.issn.1000-4440.2015.06.015]
 WANG Xia-wen,YU Xiang,QIAO Jun-qing,et al.Effect of rice-wheat rotation after watermelon season on the amount of soil microbes and the incidence of Fusarium wilt[J].,2015,(04):1291.[doi:doi:10.3969/j.issn.1000-4440.2015.06.015]
[3]张霞,李健,潘孝青,等.不同熟化垫料替代比例对稻麦轮作下作物产量、土壤肥力及重金属的影响[J].江苏农业学报,2021,(05):1175.[doi:doi:10.3969/j.issn.1000-4440.2021.05.012]
 ZHANG Xia,LI Jian,PAN Xiao-qing,et al.Effects of different proportions of spent litters on crop yield, soil fertility and heavy metals in rice-wheat rotation[J].,2021,(04):1175.[doi:doi:10.3969/j.issn.1000-4440.2021.05.012]
[4]陶玥玥,周新伟,金梅娟,等.湿润稻作体系中还田小麦秸秆分解及土壤活性碳变化特征[J].江苏农业学报,2022,38(01):94.[doi:doi:10.3969/j.issn.1000-4440.2022.01.011]
 TAO Yue-yue,ZHOU Xin-wei,JIN Mei-juan,et al.Decomposition of returned wheat straw and change characteristics of soil active carbon in water-saturated rice production system[J].,2022,38(04):94.[doi:doi:10.3969/j.issn.1000-4440.2022.01.011]

备注/Memo

备注/Memo:
收稿日期:2021-11-12基金项目:国家自然科学基金项目(41877099);安徽省科技重大专项(18030701188)作者简介:田帅(1993-),男,安徽蚌埠人,硕士研究生,主要从事养分资源综合管理研究。(E-mail) 1395010608@qq.com通讯作者:郜红建,(E-mail) hjgao@ahau.edu.cn
更新日期/Last Update: 2022-09-06