[1]石婧,刘东洋,张凤华.不同品种(品系)棉花对盐胁迫的生理响应及耐盐性评价[J].江苏农业学报,2020,(04):828-835.[doi:doi:10.3969/j.issn.1000-4440.2020.04.004]
 SHI Jing,LIU Dong-yang,ZHANG Feng-hua.Physiological responses of different cotton cultivars (strains) to salt stress and salt tolerance evaluation[J].,2020,(04):828-835.[doi:doi:10.3969/j.issn.1000-4440.2020.04.004]
点击复制

不同品种(品系)棉花对盐胁迫的生理响应及耐盐性评价()
分享到:

江苏农业学报[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2020年04期
页码:
828-835
栏目:
遗传育种·生理生化
出版日期:
2020-08-31

文章信息/Info

Title:
Physiological responses of different cotton cultivars (strains) to salt stress and salt tolerance evaluation
作者:
石婧1刘东洋2张凤华2
(1.石河子大学生命科学学院,新疆石河子832003;2.石河子大学农学院/绿洲生态农业兵团重点实验室,新疆石河子832003)
Author(s):
SHI Jing1LIU Dong-yang2ZHANG Feng-hua2
(1.College of Life Sciences, Shihezi University, Shihezi 832003, China;2.College of Agriculture, Shihezi University/Key Laboratory of Oasis Eco-Agriculture, Xinjiang Production and Construction Group, Shihezi 832003, China)
关键词:
棉花盐胁迫生理响应主成分分析灰色关联度分析耐盐性评价
Keywords:
cottonsalt stressphysiological responseprincipal component analysisgrey relational grade analysisevaluation of salt tolerance
分类号:
S562
DOI:
doi:10.3969/j.issn.1000-4440.2020.04.004
文献标志码:
A
摘要:
以耐盐棉花品种中H177、耐盐棉花品系中J0710与盐敏感棉花品种新陆早74、盐敏感棉花品种中J0102为试验材料,通过田间微区控制试验,研究土壤盐胁迫对不同棉花品种(品系)生理生化特性的影响并开展相应的耐盐性评价。结果表明,耐盐棉花品种(品系)的叶片脯氨酸含量显著高于盐敏感棉花品种(P<0.05),前者为后者的1.31~4.14倍,但耐盐棉花品种(品系)的丙二醛含量显著低于盐敏感棉花品种(P<0.05),前者仅为后者的52.73%~66.26%;耐盐棉花品种(品系)的叶片SPAD值和光合参数(净光合速率、气孔导度、胞间CO2浓度、蒸腾速率)明显大于盐敏感棉花品种;耐盐棉花品种(品系)茎中Na+含量、根中Na+含量、茎中K+含量、地上部分的K+/Na+整体上高于盐敏感棉花品种。耐盐棉花品种(品系)能保持较高的光合能力,并能维持K+/Na+平衡,同时能够减缓丙二醛含量的增加,增强棉株的耐盐性。通过主成分分析和灰色关联度分析得出,对棉花进行耐盐性评价时可将光合指标、SPAD值和抗氧化酶活性作为重要的鉴定指标。由评价结果得出,在供试的棉花品种(品系)中,中H177苗期的耐盐性较好。
Abstract:
Salt-tolerant cotton cultivar Zhong H177, strain Zhong J0710 and salt-sensitive Xinluzao 74, Zhong J0102 were used as the test materials by field micro-control experiments to study the effects of soil salinity stress on physiological and biochemical characteristics of different cotton cultivars (strains), and related salt tolerance evaluation was carried out. The results showed that proline content in the leaves of salt-tolerant cotton cultivars was significantly higher than that of salt-sensitive cotton cultivars (the former was 1.31 to 4.14 times as much as the later), but malondialdehyde content in the leaves of salt-tolerant cotton cultivars (strains) was significantly lower than that of salt-sensitive cotton cultivars (the former was only 52.73% to 66.26% of the later). The soil and plant analyzer development (SPAD) value and photosynthetic parameters(net photosynthesis rate, stomatal conductance, intercellular CO2 concentration, transpiration rate) of salt-tolerant cotton cultivars (strains) leaves were significantly higher than those of salt-sensitive cotton cultivars. The Na+ content in stem, Na+ content in root, K+ content in stem and K+/Na+ in aboveground parts of salt-tolerant cotton cultivars (strains) were higher than those of salt-sensitive cotton cultivars. The salt-tolerant cotton cultivars (strains) could maintain high photosynthetic capacity and K+/Na+ balance, slow down the increase of malondialdehyde content and enhance salt tolerance of cottons. The results of principal component analysis and grey relational grade analysis showed that photosynthetic indices, SPAD values and antioxidant enzyme activities in salt tolerance evaluation of cottons could be used as important identification indices. According to the evaluation results, Zhong H177 shows good salt tolerance at seedling stage among the tested cotton cultivars (strains).

参考文献/References:

[1]MUNNS R,GILLIHAM M. Salinity tolerance of crops-what is the cost?[J]. New Phytologist,2015,208(3):668-673.
[2]龙卫华,胡茂龙,陈松,等. 盐地种植对甘蓝型油菜产量和品质性状的影响[J]. 江苏农业科学,2015,43(3):85-87.
[3]杨劲松. 中国盐渍土研究的发展历程与展望[J]. 土壤学报,2008,45(5):837-845.
[4]KONG X Q,LUO Z,ZHANG Y J,et al. Soaking in H2O2 regulates ABA biosynthesis and GA catabolism in germinating cotton seeds under salt stress[J]. Acta Physiologiae Plantarum, 2017,39(1):2.
[5]WANG N,QI H K,SU G L,et al. Genotypic variations in ion homeostasis,photochemical efficiency and antioxidant capacity adjustment to salinity in cotton (Gossypium hirsutum L.)[J]. Soil Science and Plant Nutrition,2016,62(3):240-246.
[6]阿曼古丽·买买提阿力,王立红,郑慧,等. 盐胁迫对海岛棉幼苗生长的影响[J]. 干旱地区农业研究,2017,35(2):121-126, 200.
[7]刘金定,朱召勇,樊宝香. 棉花品种在不同浓度盐胁迫下的生理表现[J]. 中国棉花,1995,22 (9):16-17.
[8]吴晓东,王巍,金路路,等. 盐胁迫对棉花光合作用和生理指标的影响[J]. 中国棉花,2013,40(6):24-26.
[9]王汐妍,裘波音,刘玉姣,等. 盐胁迫对不同耐盐性棉花幼苗生长与生理及无机离子器官分布的影响[J]. 浙江大学学报(农业与生命科学版),2017,43(3):273-280.
[10]SEKMEN A H,OZGUR R,UZILDAY B,et al. Reactive oxygen species scavenging capacities of cotton (Gossypium hirsutum) cultivars under combined drought and heat induced oxidative stress[J]. Environmental and Experimental Botany,2014,99:141-149.
[11]ASHRAF M Y,AHMAD S. Influence of sodium chloride on ion accumulation,yield components and fibre characteristics in salt-tolerant and salt-sensitive lines of cotton (Gossypium hirsutum L.)[J]. Field Crops Research,2000,66(2):115-127.
[12]IBRAHIM W,QIU C W,ZHANG C,et al. Comparative physiological analysis in the tolerance to salinity and drought individual and combination in two cotton genotypes with contrasting salt tolerance[J]. Physiologia Plantarum,2019,165(2):155-168.
[13]LI R L,SHI F C,FUKUDA K,et al. Effects of salt and alkali stresses on germination,growth,photosynthesis and ion accumulation in alfalfa (Medicago sativa L.)[J]. Soil Science and Plant Nutrition,2010,56(5):725-733.
[14]ALAMIN M,ZENG D D,SULTANA M H,et al. Photosynthesis,cellulose contents and ultrastructure changes of mutant rice leading to screw flag leaf[J]. Plant Growth Regulation,2018,85(1):1-13.
[15]戴海芳,武辉,阿曼古丽·买买提阿力,等. 不同基因型棉花苗期耐盐性分析及其鉴定指标筛选[J].中国农业科学,2014,47(7):1290-1300.
[16]马辉,戴路,阿布都艾尼·阿布都维力,等. 灰色关联度法在优质棉品种综合评价中的应用[J]. 中国棉花,2018,45(4):19-21.
[17]高俊凤. 植物生理学实验指导[M]. 北京:高等教育出版社,2006:142-228.
[18]刘自刚,王志江,方圆,等. NaCl胁迫对白菜型冬油种子萌发和幼苗生理的影响[J].中国油料作物学报,2017,39(3):351-359.
[19]马洪波,曹月阳,陈杰,等. 土壤盐胁迫对小麦养分和渗透调节物质的影响[J]. 江苏农业学报,2012,28(6):1300-1305.
[20]梁晓艳,顾寅钰,李萌,等. 盐胁迫下不同耐盐性花生品种形态及生理差异研究[J]. 花生学报,2018,47(1):19-26.
[21]韩冰,徐刚,郭世荣,等. 不同浓度盐胁迫对黄瓜幼苗生长和生理代谢的影响[J]. 江苏农业学报,2014,30(1):172-177.
[22]PAYTON P,WEBB R,KORNYEYEV D,et al. Protecting cotton photosynthesis during moderate chilling at high light intensity by increasing chloroplastic antioxidant enzyme activity[J]. Journal of Experimental Botany,2001,52(365):2345-2354.
[23]TANG L L,CAI H,ZHAI H,et al. Overexpression of Glycine soja WRKY20 enhances both drought and salt tolerance in transgenic alfalfa (Medicago sativa L.)[J]. Plant Cell Tissue and Organ Culture,2014,118(1):77-86.
[24]许艳超,韦洋洋,李振庆,等. 复合盐碱胁迫下半野生棉苗期耐盐性综合评价及其关键生理指标的变化[J]. 棉花学报,2018,30(3):231-241.
[25]郝治安,吕有军. 植物耐盐机制研究进展[J]. 河南农业科学,2004(11):30-33.
[26]王旭明,赵夏夏,周鸿凯,等. NaCl胁迫对不同耐盐性水稻某些生理特性和光合特性的影响[J]. 热带作物学报,2019,40(5):882-890.
[27]张晓晓,殷小琳,李红丽,等. NaCl胁迫对不同白榆品系生物量及光合作用的影响[J]. 生态学报,2017,37(21):7258-7265.
[28]郭丽丽,郝立华,贾慧慧,等. NaCl胁迫对两种番茄气孔特征、气体交换参数和生物量的影响[J]. 应用生态学报,2018,29(12):3949-3958.
[29]CHEN M,YANG Z,LIU J,et al. Adaptation mechanism of salt excluders under saline conditions and its applications[J]. International Journal of Molecular Sciences,2018,19(11):3668.
[30]颜宏,石德成,尹尚军,等. 外施Ca2+、ABA及H3PO4对盐碱胁迫的缓解效应[J]. 应用生态学报,2000,11(6):889-892.
[31]王宁,杨杰,黄群,等. 盐胁迫下棉花K+和Na+离子转运的耐盐性生理机制[J]. 棉花学报,2015,27(3):208-215.
[32]BOSE J,SHABALA L,POTTOSIN I,et al. Kinetics of xylem loading, membrane potential maintenance,and sensitivity of K+‐permeable channels to reactive oxygen species: physiological traits that differentiate salinity tolerance between pea and barley[J]. Plant,Cell & Environment,2014,37(3):589-600.
[33]SHABALA S, BOSE J, HEDRICH R. Salt bladders:do they matter?[J]. Trends in Plant Science,2014,19(11):687-691.
[34]SHARIF I,ALEEM S,FAROOQ J,et al. Salinity stress in cotton:effects,mechanism of tolerance and its management strategies[J]. Physiology and Molecular Biology of Plants,2019,25(1):1-14.
[35]高雁,娄恺,李春. 盐分胁迫下棉花幼苗对外源甜菜碱的生理响应[J]. 农业工程学报,2011,27(增刊1):244-248.
[36]王立红,张巨松,李星星,等. 外源水杨酸对盐胁迫下棉花幼苗光合作用的影响[J]. 核农学报,2016, 30(9):1864-1871.

相似文献/References:

[1]赵亮,狄佳春,陈旭升.棉花基因组数据库中CPS&KS 基因的查找与分析[J].江苏农业学报,2016,(01):27.[doi:10.3969/j.issn.1000-4440.2016.01.004 ]
 ZHAO Liang,DI Jia-chun,CEHN Xu-sheng.Analysis of ent-copalyl diphosphate aynthase and ent-kaurene synthase (CPS&KS) gene family in cotton genome databases[J].,2016,(04):27.[doi:10.3969/j.issn.1000-4440.2016.01.004 ]
[2]赵君,刘剑光,吴巧娟,等.棉花种质种仁含油量测定及其遗传多样性分析[J].江苏农业学报,2015,(05):975.[doi:doi:10.3969/j.issn.1000-4440.2015.05.006]
 ZHAO Jun,LIU Jian-guang,WU Qiao-juan,et al.Kernel oil content and genetic diversity of upland cotton germplasm[J].,2015,(04):975.[doi:doi:10.3969/j.issn.1000-4440.2015.05.006]
[3]杨长琴,刘瑞显,张国伟,等.花铃期干旱对棉纤维素累积及纤维比强度的影响[J].江苏农业学报,2015,(06):1218.[doi:doi:10.3969/j.issn.1000-4440.2015.06.005]
 YANG Chang-qin,LIU Rui-xian,ZHANG Guo-wei,et al.Cellulose accumulation and fiber strength affected by drought during flowering and bolling stage in cotton[J].,2015,(04):1218.[doi:doi:10.3969/j.issn.1000-4440.2015.06.005]
[4]杨长琴,刘瑞显,张国伟,等.花铃期渍水对棉铃对位叶光合速率、物质累积及产量的影响[J].江苏农业学报,2015,(04):732.[doi:10.3969/j.issn.1000-4440.2015.04.004]
 YANG Chang-qin,LIU Rui-xian,ZHANG Guo-wei,et al.Photosynthesis of subtending leaves of bolls, dry matter accumulation and cotton yield in response to waterlogging during flowering and boll-forming stage[J].,2015,(04):732.[doi:10.3969/j.issn.1000-4440.2015.04.004]
[5]韩金龙,李慧,蔺经,等.核黄素对盐胁迫下杜梨叶片抗氧化系统的影响[J].江苏农业学报,2015,(04):893.[doi:10.3969/j.issn.1000-4440.2015.04.029]
 HAN Jing-long,LI Hui,LIN Jing,et al.The regulatory role of riboflavin in antioxidant system of Pyrus betulaefolia in response to salt tolerance[J].,2015,(04):893.[doi:10.3969/j.issn.1000-4440.2015.04.029]
[6]刘雅辉,王秀萍,鲁雪林,等.棉花耐盐相关序列扩增多态性(SRAP)分子标记筛选[J].江苏农业学报,2015,(03):484.[doi:10.3969/j.issn.1000-4440.2015.03.003]
 LIU Ya-hui,WANG Xiu-ping,LU Xue-lin,et al.Selection of sequence-related amplified polymorphism molecular marker associated with salt tolerance of cotton[J].,2015,(04):484.[doi:10.3969/j.issn.1000-4440.2015.03.003]
[7]安飞飞,简纯平,杨龙,等.木薯幼苗叶绿素含量及光合特性对盐胁迫的响应[J].江苏农业学报,2015,(03):500.[doi:10.3969/j.issn.1000-4440.2015.03.006]
 AN Fei-fei,JIAN Chun-ping,YANG Long,et al.Chlorophyll contents and photosynthetic characteristics of cassava seedlings in response to NaCl stress[J].,2015,(04):500.[doi:10.3969/j.issn.1000-4440.2015.03.006]
[8]王为,叶泗洪,潘宗瑾,等.棉花分子标记冗余性检测与评价的方法[J].江苏农业学报,2015,(02):247.[doi:10.3969/j.issn.1000-4440.2015.02.004]
 WANG Wei,YE Si-hong,PAN Zong-jin,et al.An approach to detecting and evaluating molecular marker redundancy in cotton[J].,2015,(04):247.[doi:10.3969/j.issn.1000-4440.2015.02.004]
[9]刘金龙,辛寒晓,范学明,等.盐胁迫下鱼蛋白多肽对樱桃番茄种子发芽特性的影响[J].江苏农业学报,2017,(03):662.[doi:doi:10.3969/j.issn.1000-4440.2017.03.026]
 LIU Jin-long,XIN Han-xiao,FAN Xue-ming,et al.Effects of fish protein polypeptide on salt-stressed cherry tomato seed germination[J].,2017,(04):662.[doi:doi:10.3969/j.issn.1000-4440.2017.03.026]
[10]田礼欣,李丽杰,刘旋,等.外源海藻糖对盐胁迫下玉米幼苗根系生长及生理特性的影响[J].江苏农业学报,2017,(04):754.[doi:doi:10.3969/j.issn.1000-4440.2017.04.005]
 TIAN Li-xin,LI Li-jie,LIU Xuan,et al.Root growth and physiological characteristics of salt-stressed maize seedlings in response to exogenous trehalose[J].,2017,(04):754.[doi:doi:10.3969/j.issn.1000-4440.2017.04.005]
[11]黄芳,徐珍珍,孟珊,等.盐胁迫下棉花LTR-反转座子的转录激活及在耐盐相关基因发掘中的应用[J].江苏农业学报,2017,(06):1220.[doi:doi:10.3969/j.issn.1000-4440.2017.06.004]
 HUANG Fang,XU Zhen-zhen,MENG Shan,et al.The identification of long terminal repeat retrotransposons (LTR-RTs) with transcription activity under salt stress and its application in screening the candidate genes related to salt-tolerant in cotton[J].,2017,(04):1220.[doi:doi:10.3969/j.issn.1000-4440.2017.06.004]

备注/Memo

备注/Memo:
收稿日期:2020-01-08基金项目:国家重点研发计划项目(2016YFC0501406)作者简介:石婧(1994-),女,新疆昌吉人,硕士,主要从事绿洲农业生态研究。(E-mail)15739333226@163.com通讯作者:张凤华,(E-mail)zfh2000@126.com
更新日期/Last Update: 2020-09-08