[1]于园,刘国强,苏圣淋,等.玉米转基因成分的检测[J].江苏农业学报,2020,(04):836-841.[doi:doi:10.3969/j.issn.1000-4440.2020.04.005]
 YU Yuan,LIU Guo-qiang,SU Sheng-lin,et al.Detection of transgenic ingredients in maize[J].,2020,(04):836-841.[doi:doi:10.3969/j.issn.1000-4440.2020.04.005]
点击复制

玉米转基因成分的检测()
分享到:

江苏农业学报[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2020年04期
页码:
836-841
栏目:
遗传育种·生理生化
出版日期:
2020-08-31

文章信息/Info

Title:
Detection of transgenic ingredients in maize
作者:
于园123刘国强123苏圣淋123罗建兴123郭梁123
(1.锡林郭勒职业学院,内蒙古锡林浩特026000;2.锡林郭勒生物工程研究院,内蒙古锡林浩特026000;3.锡林郭勒食品检验检测和风险评估中心,内蒙古锡林浩特026000)
Author(s):
YU Yuan123LIU Guo-qiang123SU Sheng-lin123LUO Jian-xing123GUO Liang123
(1.Xilingol Vocational College, Xilinhot 026000, China;2.Xilingol Institute of Bioengineering, Xilinhot 026000, China;3.Xilingol Food Testing and Risk Assessment Center, Xilinhot 026000, China)
关键词:
玉米实时荧光PCR转基因分析
Keywords:
maizereal-time PCRtransgenicanalysis
分类号:
S513.01
DOI:
doi:10.3969/j.issn.1000-4440.2020.04.005
文献标志码:
A
摘要:
基于实时荧光PCR技术,通过构建阳性质控,对一种玉米样品进行多种转基因成分分析。首先,筛选出玉米样品中常见的外源转基因片段,构建阳性质粒并对阳性质粒进行验证;然后,对样品中可能含有的调控元件、目的基因以及筛选基因进行检测分析。实时荧光PCR检测结果表明,转基因玉米样品中含有2种启动子(pCaMV35S和pRice-Actin)、2种终止子(tNOS和tCaMV35S)、3种目的基因[Cry1A(c)、CP4-EPSPS和CTP2-CP4-EPSPS]以及1种筛选基因(PMI)。因此所检测的玉米样品中含有多种转基因成分,推测其转基因玉米样品含有多种转基因玉米品系。
Abstract:
In this study, multiple transgenic components of a maize sample were analyzed by constructing positive quality control based on real-time PCR. Firstly, the exogenous transgenic fragments commonly found in maize samples were screened, and the positive plasmids were constructed verified. Then, the possible regulatory elements, target genes and screening genes in the samples were analyzed. The results of real-time PCR showed that the transgenic maize samples contained two promoters (pCaMV35S and pRice-Actin), two terminators (tNOS and tCaMV35S), three target genes (Cry1A(c), CP4-EPSPS and CTP2-CP4-EPSPS) and a screening gene (PMI). Therefore, the tested maize samples contain many transgenic ingredients, and it is speculated that the transgenic corn samples contain many transgenic maize strains.

参考文献/References:

[1]HOLLINGWORTH R M, BJELDANES L F, BOLGER M, et al.The safety of genetically modified foods produced through biotechnology[J]. Toxicological Sciences, 2003, 71(1): 2-8.
[2]SINGH O V, GHAI S, PAUL D, et al. Genetically modified crops: success, safety assessment, and public concern[J]. Applied Microbiology and Biotechnology, 2006, 71(5): 598-607.
[3]SINGER M, SOLL D. Guidelines for DNA hybrid molecules[J]. Science, 1973, 181(4105): 1114.
[4]农业部农业贸易促进中心政策研究所,中国农业科学院农业信息研究所国际情报研究室. 2016年全球生物技术及转基因作物商业化发展态势[J]. 世界农业,2017(7):231-232.
[5]龙阳,谢艳辉,袁俊杰,等. 我国转基因食品标识制度完善对策[J]. 食品工业科技,2018,39(18):311-314.
[6]胡加祥. 我国转基因生物、食品规制体系完善研究[J]. 贵州省党校学报,2018,173(1):102-110.
[7]祁潇哲. 加强粮食收储环节转基因质量安全监管探讨[J]. 粮油食品科技,2018,26(5):58-62.
[8]张卉,刘长江. 转基因作物安全性研究进展[J]. 沈阳农业大学学报,2002,33(2):151-154.
[9]NORDLEE J A, TAYLOR S L, TOWNSEND J A, et al. Identification of a Brazil-nut allergen in transgenic soybeans[J]. The New England Journal of Medicine, 1996, 334(11): 688-692.
[10]SONG P, PINERO D, CHARLTON S, et al. Polymerase chain reaction technology as analytical tool in agricultural biotechnology[J]. Journal of AOAC International, 2005, 88(1): 136-155.
[11]ZEITLER R, PIETSCH K, WAIBLINGER H U. Validation of real-time PCR methods for the quantification of transgenic contaminations in rape seed[J]. European Food Research and Technology, 2002, 214(4): 346-351.
[12]BAEUMLER S, WULFF D, TAGLIANI L, et al. A real-time quantitative PCR detection method specific to widestrike transgenic cotton (Event 281-24-236/3006-210-23)[J]. Journal of Agricultural and Food Chemistry, 2006, 54(18): 6527-6534.
[13]MIRAGLIA M, BERDAL K G, BRERA C, et al. Detection and traceability of genetically modified organisms in the food production chain[J]. Food and Chemical Toxicology, 2004, 42: 1157-1180.
[14]徐俊锋,王鹏飞,李玥莹,等. 转基因植物中CaMV35S和tNOS元件的4种定性PCR检测方法的比较[J]. 农业生物技术学报,2015,23(3):397-407.
[15]MCELROY D, ZHANG W, WU C R. Isolation of an efficient actin promoter for use in rice transformation[J]. The Plant Cell, 1990, 2(2): 163-171.
[16]DEBODE F, JANSSEN E, BERBEN G. Development of 10 new screening PCR assays for GMO detection targeting promoters (pFMV, pNOS, pSSuAra, pTA29, pUbi, pRice actin) and terminators (t35S, tE9, tOCS, tg7)[J]. European Food Research and Technology, 2013, 236(4): 659-669.
[17]GUNNING R V, DANG H T, KEMP F C, et al. New resistance mechanism in helicoverpa armigera threatens transgenic crops expressing Bacillus thuringiensis Cry1Ac toxin[J]. Applied and Environmental Microbiology, 2005, 71(5): 2558-2563.
[18]FERRY N, MULLIGAN E A, MAJERUS M E N, et al. Bitrophic and tritrophic effects of Bt Cry3A transgenic potato on beneficial, non-target, beetles[J]. Transgenic Research, 2007, 16(6): 795-812.
[19]CHRIST B, HOCHSTRASSER R, GUYER L, et al. Non-specific activities of the major herbicide-resistance gene BAR[J]. Nature Plants, 2017, 3(12): 1-34.
[20]CHHAPEKAR S, RAGHAVENDRARAO S, PAVAN G, et al. Transgenic rice expressing a codon-modified synthetic CP4-EPSPS confers tolerance to broad-spectrum herbicide, glyphosate[J]. Plant Cell Reports, 2015, 34(5): 721-731.
[21]DOBNIK D, SPILSBERG B, BOGOZALEC K A, et al. Multiplex quantification of 12 European Union authorized genetically modified maize lines with droplet digital polymerase chain reaction[J]. Analytical Chemistry, 2015, 87(16): 8218-8226.
[22]GADALETA A, GIANCASPRO A, BLECHL A, et al. Phosphomannose isomerase, pmi, as a selectable marker gene for durum wheat transformation[J]. Journal of Cereal Science, 2006, 43(1): 31-37.
[23]DE VRIES J, WACKERNAGEL W. Detection of nptⅡ (kanamycin resistance) genes in genomes of transgenic plants by marker-rescue transformation[J]. Molecular Genetics and Genomics, 1998, 257(6): 606-613.
[24]ZHANG C L, CHEN D F, MCCORMAC A C, et al. Use of the GFP reporter as a vital marker for agrobacterium-mediated transformation of sugar beet (Beta vulgaris L.)[J]. Molecular Biotechnology, 2001, 17(2): 109-117.
[25]MURRAY M G, THOMPSON W F. Rapid isolation of high molecular weight plant DNA[J]. Nucleic Acids Research, 1980, 8(19): 4321-4325.
[26]中华人民共和国国家质量监督检验检疫总局. 植物及其加工产品中转基因成分实时荧光PCR定性检验方法:SN/T 1204-2016[S]. 北京:中国质检出版社,2016.
[27]NAGESWARA-RAO1 M, KWIT C, AGARWAL S, et al. Sensitivity of a real-time PCR method for the detection of transgenes in a mixture of transgenic and non-transgenic seeds of papaya (Carica papaya L.)[J]. BMC Biotechnology, 2013, 13(1): 69-69.
[28]金红,程奕,赵昕,等. 大豆色拉油中转基因成分检测技术研究[J]. 华北农学报,2004,19(1):24-27.
[29]王小花,傅春玲,王国卿,等. Taqman实时定量PCR技术检测大豆转基因成分[J]. 食品科技,2009,34(2):264-268.
[30]李葱葱,王青山,李飞武,等. 用实时荧光PCR方法定量检测Bt176转基因玉米[J]. 吉林农业科学,2007(5):24-27.

相似文献/References:

[1]宝华宾,梁帅强,吕远大,等.玉米籽粒蛋白含量Meta-QTL及候选基因分析[J].江苏农业学报,2016,(04):736.[doi:10.3969/j.issn.100-4440.2016.04.004]
 BAO Hua-bin,LIANG Shuai-qiang,LYU Yuan- da,et al.Analysis of meta-QTL and candidate genes related to protein concentration in maize grain[J].,2016,(04):736.[doi:10.3969/j.issn.100-4440.2016.04.004]
[2]印志同,秦秋霞,阚欣,等.玉米快速叶绿素荧光参数全基因组关联分析[J].江苏农业学报,2016,(04):746.[doi:10.3969/j.issn.100-4440.2016.04.005]
 YIN Zhi-tong,QIN Qiu-xia,KAN Xin,et al.Genome-wide association analysis of fast chlorophyll fluorescence parameters in maize[J].,2016,(04):746.[doi:10.3969/j.issn.100-4440.2016.04.005]
[3]岳海旺,陈淑萍,彭海成,等.玉米籽粒灌浆特性品种间比较[J].江苏农业学报,2016,(05):1043.[doi:10.3969/j.issn.1000-4440.2016.05.014]
 YUE Hai-wang,CHEN Shu-ping,PENG Hai-cheng,et al.Grain filling characteristics in maize materials[J].,2016,(04):1043.[doi:10.3969/j.issn.1000-4440.2016.05.014]
[4]周玲,梁帅强,林峰,等.玉米二态性 InDel 位点的鉴定和分子标记开发[J].江苏农业学报,2016,(06):1223.[doi:doi:10.3969/j.issn.1000-4440.2016.06.005]
 ZHOU Ling,LIANG Shuai-qiang,LIN Feng,et al.Biallelic InDel loci detection and molecular marker development in maize[J].,2016,(04):1223.[doi:doi:10.3969/j.issn.1000-4440.2016.06.005]
[5]刘朝茂,李成云.玉米与大豆间作对玉米叶片衰老的影响[J].江苏农业学报,2017,(02):322.[doi:doi:10.3969/j.issn.1000-4440.2017.02.013]
 LIU Chao-mao,LI Cheng-yun.Effects of maize/soybean intercropping on maize leaf senescence[J].,2017,(04):322.[doi:doi:10.3969/j.issn.1000-4440.2017.02.013]
[6]江彬,毕银丽,申慧慧,等.氮营养与AM真菌协同对玉米生长及土壤肥力的影响[J].江苏农业学报,2017,(02):327.[doi:doi:10.3969/j.issn.1000-4440.2017.02.014]
 JIANG Bin,BI Yin-li,SHEN Hui-hui,et al.Synergetic effects of Arbuscular mycorrhizal fungus and nitrogen on maize growth and soil fertility[J].,2017,(04):327.[doi:doi:10.3969/j.issn.1000-4440.2017.02.014]
[7]李国锋,葛敏,吕远大.Opaque2转录因子对玉米α-醇溶蛋白基因家族成员表达的影响[J].江苏农业学报,2015,(06):1224.[doi:doi:10.3969/j.issn.1000-4440.2015.06.006]
 LI Guo-feng,GE Min,L Yuan-da.Differential expression of α-zein family genes regulated by Opaque2 transcription factor[J].,2015,(04):1224.[doi:doi:10.3969/j.issn.1000-4440.2015.06.006]
[8]管莉,张阿英.CaM 与 ZmCCaMK 相互作用参与 BR 诱导的玉米叶片抗氧化防护[J].江苏农业学报,2015,(01):10.[doi:10.3969/j.issn.1000-4440.2015.01.002]
 GUAN Li,ZHANG A-ying.CaM-ZmCCaMK interaction involved in brassinosteroid-induced antioxidant defense in leaves of maize[J].,2015,(04):10.[doi:10.3969/j.issn.1000-4440.2015.01.002]
[9]王元琮,何冰,林峰,等.调控玉米阻止授粉后叶片衰老的QTL定位[J].江苏农业学报,2017,(04):747.[doi:doi:10.3969/j.issn.1000-4440.2017.04.004]
 WANG Yuan-cong,HE Bing,LIN Feng,et al.QTL mapping for pollination-prevention on leaf senescence[J].,2017,(04):747.[doi:doi:10.3969/j.issn.1000-4440.2017.04.004]
[10]田礼欣,李丽杰,刘旋,等.外源海藻糖对盐胁迫下玉米幼苗根系生长及生理特性的影响[J].江苏农业学报,2017,(04):754.[doi:doi:10.3969/j.issn.1000-4440.2017.04.005]
 TIAN Li-xin,LI Li-jie,LIU Xuan,et al.Root growth and physiological characteristics of salt-stressed maize seedlings in response to exogenous trehalose[J].,2017,(04):754.[doi:doi:10.3969/j.issn.1000-4440.2017.04.005]

备注/Memo

备注/Memo:
收稿日期:2019-11-14基金项目:锡林郭勒职业学院科研课题(ZD-2019-01、ZD-2020-03)作者简介:于园(1982-),女,内蒙古锡林浩特人,硕士,讲师,研究方向为食品安全。(E-mail)422471357@qq.com通讯作者:郭梁, (E-mail)herdman86@163.com
更新日期/Last Update: 2020-09-08