[1]印志同,秦秋霞,阚欣,等.玉米快速叶绿素荧光参数全基因组关联分析[J].江苏农业学报,2016,(04):746-751.[doi:10.3969/j.issn.100-4440.2016.04.005]
 YIN Zhi-tong,QIN Qiu-xia,KAN Xin,et al.Genome-wide association analysis of fast chlorophyll fluorescence parameters in maize[J].,2016,(04):746-751.[doi:10.3969/j.issn.100-4440.2016.04.005]
点击复制

玉米快速叶绿素荧光参数全基因组关联分析()
分享到:

江苏农业学报[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2016年04期
页码:
746-751
栏目:
遗传育种·生理生化
出版日期:
2016-10-31

文章信息/Info

Title:
Genome-wide association analysis of fast chlorophyll fluorescence parameters in maize
作者:
印志同秦秋霞阚欣陈雅楠成前邓德祥
扬州大学江苏省作物遗传生理国家重点实验室培育点/植物功能基因组学教育部重点实验室/粮食作物现代产业技术协同创新中心,江苏 扬州 225009
Author(s):
YIN Zhi-tongQIN Qiu-xiaKAN XinCHEN Ya-nanCHENG QianDENG De-xiang
Key Laboratory of Crop Genetics and Physiology of Jiangsu Province,Key Laboratory of Plant Functional Genomics of MOE/ Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University,Yangzhou 225009,China
关键词:
玉米快速叶绿素荧光参数关联分析自交系SNP标记
Keywords:
maize fast chlorophyll fluorescence parameters (JIP parameters) association analysis inbred line singlenucleotide polymorphism (SNP) marker
分类号:
S513.035.3
DOI:
10.3969/j.issn.100-4440.2016.04.005
文献标志码:
A
摘要:
快速叶绿素荧光参数可以准确快速地探测植株光能转化利用效率。以404份玉米自交系组成的自然群体为材料,利用5.6×105个覆盖全基因组的SNP标记,对5个叶绿素荧光参数进行全基因组关联分析。在4个大田种植环境下,共检测到41个与快速叶绿素荧光参数显著关联的SNP位点,其中8个SNP位点与ETo/TRo显著关联,6个SNP位点与ABS/CSo显著关联,18个SNP位点与TRo/ABS显著关联,4个SNP位点与ETo/CSo显著关联,5个SNP位点与PIcs显著关联。研究结果对于挖掘玉米叶绿素荧光参数相关基因,揭示光合作用遗传机理和开展分子标记辅助选择具有重要意义。
Abstract:
Fast chlorophyll fluorescence parameters are widely used to characterize the photosynthetic efficiency of plants. In this study, the genomewide association analysis was used to detect key singlenucleotide polymorphisms (SNPs) associated with fast chlorophyll fluorescence parameters using more than 560 000 SNPs in a maize panel consisting of 404 inbred lines. In four field environments, 41 SNPs were detected to be associated with five fast chlorophyll fluorescence parameters, including ABS/CSo, ETo/CSo,TRo/ABS,ETo/TRo, andPIcs. Among these identified SNPs which was 8, 6, 18, 4, and 5 SNPs were significantly associated with ETo/TRo, ABS/CSo,TRo/ABS, ETo/CSo, and PIcs respectively. These significant SNPs will help discover genes for chlorophyll fluorescence parameters, better understand the genetic basis of photosynthesis, and assist in developing marker-assisted selection breeding programs in maize.

参考文献/References:

[1] STRASSER B, STRASSER R, MATHIS P. Measuring fast fluorescence transients to address environmental questions: the JIPtest [M]. Montpellier: Kluwer Academic Publishers About CAB, 1995.
[2]STRASSER R, SRIVASTAVA A, TSIMILLIMICHAEL M. The fluorescence transient as a tool to characterize and screen photosynthetic samples. Probing photosynthesis: mechanisms, regulation and adaptation [M]. London: CRC Press, 2000: 445-483.
[3]STRASSER R, TSIMILLIMICHAEL M, SRIVASTAVA A. Analysis of the chlorophyll a fluorescence transient. Chlorophyll a fluorescence: a signature of photosynthesis[M]. The Netherlands: Springer, 2004: 321-362.
[4]KRAUSE G, WEIS E. Chlorophyll fluorescence and photosynthesis: the basics [J]. Annu Rev Plant Biol, 1991, 42(4): 313-349.
[5]CZYCZYLOMYSZA I, TYRKA M, MARCINSKA I, et al. Quantitative trait loci for leaf chlorophyll fluorescence parameters, chlorophyll and carotenoid contents in relation to biomass and yield in bread wheat and their chromosome deletion bin assignments [J]. Mol Breeding, 2013, 32(1): 189-210.
[6]YIN Z, MENG F, SONG H, et al. GmFtsH9 expression correlates with in vivo photosystem II function: chlorophyll a fluorescence transient analysis and eQTL mapping in soybean [J]. Planta, 2011, 234(4): 815-827.
[7]YIN Z, MENG F, SONG H, et al. Mapping of quantitative trait loci associated with chlorophyll a fluorescence parameters in soybean [J]. Planta, 2010, 231(4):875-885.
[8]HAO D, CHAO M, YIN Z, et al. Genomewide association analysis detecting significant single nucleotide polymorphisms for chlorophyll and chlorophyll fluorescence parameters in soybean (Glycine max) landraces[J]. Euphytica, 2012, 186(3): 919-931.
[9]印志同,孟凡凡,宋海娜,等. 大豆开花盛期快速叶绿素荧光参数的QTL分析 [J]. 中国农业科学, 2011, 44 (24): 498-4987.
[10] YIN Z, QIN Q, WU F, et al. Quantitative trait locus mapping of chlorophyll a fluorescence parameters using a recombinant inbred line population in maize [J]. Euphytica, 2015, 205(1): 25-35.
[11] SIMIC D, LEPEDUS H, JURKOVIC V, et al. Quantitative genetic analysis of chlorophyll a fluorescence parameters in maize in the field environments [J]. J Integr Plant Biol, 2014, 56(7): 695-708.
[12] BEAVIS W D. The power and deceit of QTL experiments: lessons from comparative QTL studies [M]. Washington DC: In Proceedings of the FortyNinth Annual Corn & Sorghum Industry Research Conference, 1994: 25-266.
[13] LARSSON S J, LIPKA A E, BUCKLER E S. Lessons from Dwarf8 on the strengths and weaknesses of structured association mapping [J]. PLoS Genetics, 2013, 9(2): e1003246.
[14] ZHANG H, HAO D, SITOE H, et al. Genetic dissection of the relationship between plant architecture and yield component traits in soybean (Glycine max) by association analysis across multiple environments [J]. Plant Breeding, 2015,134(5): 564-572.
[15] 杨小红,严建兵,郑艳萍,等. 植物数量性状关联分析研究进展 [J]. 作物学报, 2007, 33(4):523-530.
[16] ATWELL S, HUANG Y, VILHJ B, et al. Genomewide association study of 107 phenotypes in Arabidopsis thaliana inbred lines [J]. Nature, 2010, 465(7298):627-631.
[17] LAI J, LI R, XU X, et al. Genomewide patterns of genetic variation among elite maize inbred lines[J]. Nat Genet, 2010, 42(11): 1027-1030.
[18] YANG X, YAN J, SHAH T, et al. Genetic analysis and characterization of a new maize association mapping panel for quantitative trait loci dissection [J]. Theor Appl Genet, 2010, 121(3): 417-431.
[19] LI H, PENG Z, YANG X, et al. Genomewide association study dissects the genetic architecture of oil biosynthesis in maize kernels [J]. Nat Genet, 2013, 45(1): 43-50.
[20] HOLLAND J, NYQUIST W, CERVANTESMARTINEZ C. Estimating and interpreting heritability for plant breeding: an update [J]. Plant Breed Rev, 2003, 22: 9-112.
[21] PRITCHARD J, STEPHENS M, DONNELLY P. Inference of population structure using multilocus genotype data [J]. Genetics, 2000, 155(2): 945-959.
[22] HARDY O, VEKEMANS X. SPAGeDi: a versatile computer program to analyse spatial genetic structure at the individual or population levels [J]. Mol Ecol Notes, 2002, 2(4): 618-620.
[23] KUMP K L, BRADBURY P J, WISSER R J, et al. Genomewide association study of quantitative resistance to southern leaf blight in the maize nested association mapping population [J]. Nat Genet, 2011, 43(2): 163-168.
[24] BRADBURY P, ZHANG Z, KROON D, et al. TASSEL: software for association mapping of complex traits in diverse samples[J]. Bioinformatics, 2007, 23(19):2633-2635.
[25] YANG X, YAN J, SHAH T, et al. Genetic analysis and characterization of a new maize association mapping panel for quantitative trait loci dissection [J]. Theor Appl Genet, 2010, 121(3): 417-431.
[26] JOMPUK C, FRACHEBOUD Y, STAMP P, et al. Mapping of quantitative trait loci associated with chilling tolerance in maize (Zea mays L.) seedlings grown under field conditions [J]. J Exp Bot, 2005, 56(414):1153-1163.
[27] KRAUSE G, WEIS E. Chlorophyll fluorescence and photosynthesis: the basics [J]. Annu Rev Plant Biol, 1991,42 (1):313-349.[28] LONG S, MARSHALLCOLON A, ZHU X G. Meeting the global food demand of the future by engineering crop photosynthesis and yield potential [J]. Cell, 2015, 161(1):56-66.

相似文献/References:

[1]宝华宾,梁帅强,吕远大,等.玉米籽粒蛋白含量Meta-QTL及候选基因分析[J].江苏农业学报,2016,(04):736.[doi:10.3969/j.issn.100-4440.2016.04.004]
 BAO Hua-bin,LIANG Shuai-qiang,LYU Yuan- da,et al.Analysis of meta-QTL and candidate genes related to protein concentration in maize grain[J].,2016,(04):736.[doi:10.3969/j.issn.100-4440.2016.04.004]
[2]岳海旺,陈淑萍,彭海成,等.玉米籽粒灌浆特性品种间比较[J].江苏农业学报,2016,(05):1043.[doi:10.3969/j.issn.1000-4440.2016.05.014]
 YUE Hai-wang,CHEN Shu-ping,PENG Hai-cheng,et al.Grain filling characteristics in maize materials[J].,2016,(04):1043.[doi:10.3969/j.issn.1000-4440.2016.05.014]
[3]周玲,梁帅强,林峰,等.玉米二态性 InDel 位点的鉴定和分子标记开发[J].江苏农业学报,2016,(06):1223.[doi:doi:10.3969/j.issn.1000-4440.2016.06.005]
 ZHOU Ling,LIANG Shuai-qiang,LIN Feng,et al.Biallelic InDel loci detection and molecular marker development in maize[J].,2016,(04):1223.[doi:doi:10.3969/j.issn.1000-4440.2016.06.005]
[4]刘朝茂,李成云.玉米与大豆间作对玉米叶片衰老的影响[J].江苏农业学报,2017,(02):322.[doi:doi:10.3969/j.issn.1000-4440.2017.02.013]
 LIU Chao-mao,LI Cheng-yun.Effects of maize/soybean intercropping on maize leaf senescence[J].,2017,(04):322.[doi:doi:10.3969/j.issn.1000-4440.2017.02.013]
[5]江彬,毕银丽,申慧慧,等.氮营养与AM真菌协同对玉米生长及土壤肥力的影响[J].江苏农业学报,2017,(02):327.[doi:doi:10.3969/j.issn.1000-4440.2017.02.014]
 JIANG Bin,BI Yin-li,SHEN Hui-hui,et al.Synergetic effects of Arbuscular mycorrhizal fungus and nitrogen on maize growth and soil fertility[J].,2017,(04):327.[doi:doi:10.3969/j.issn.1000-4440.2017.02.014]
[6]李国锋,葛敏,吕远大.Opaque2转录因子对玉米α-醇溶蛋白基因家族成员表达的影响[J].江苏农业学报,2015,(06):1224.[doi:doi:10.3969/j.issn.1000-4440.2015.06.006]
 LI Guo-feng,GE Min,L Yuan-da.Differential expression of α-zein family genes regulated by Opaque2 transcription factor[J].,2015,(04):1224.[doi:doi:10.3969/j.issn.1000-4440.2015.06.006]
[7]管莉,张阿英.CaM 与 ZmCCaMK 相互作用参与 BR 诱导的玉米叶片抗氧化防护[J].江苏农业学报,2015,(01):10.[doi:10.3969/j.issn.1000-4440.2015.01.002]
 GUAN Li,ZHANG A-ying.CaM-ZmCCaMK interaction involved in brassinosteroid-induced antioxidant defense in leaves of maize[J].,2015,(04):10.[doi:10.3969/j.issn.1000-4440.2015.01.002]
[8]王元琮,何冰,林峰,等.调控玉米阻止授粉后叶片衰老的QTL定位[J].江苏农业学报,2017,(04):747.[doi:doi:10.3969/j.issn.1000-4440.2017.04.004]
 WANG Yuan-cong,HE Bing,LIN Feng,et al.QTL mapping for pollination-prevention on leaf senescence[J].,2017,(04):747.[doi:doi:10.3969/j.issn.1000-4440.2017.04.004]
[9]田礼欣,李丽杰,刘旋,等.外源海藻糖对盐胁迫下玉米幼苗根系生长及生理特性的影响[J].江苏农业学报,2017,(04):754.[doi:doi:10.3969/j.issn.1000-4440.2017.04.005]
 TIAN Li-xin,LI Li-jie,LIU Xuan,et al.Root growth and physiological characteristics of salt-stressed maize seedlings in response to exogenous trehalose[J].,2017,(04):754.[doi:doi:10.3969/j.issn.1000-4440.2017.04.005]
[10]王尔美,李卫国,顾晓鹤,等.基于光谱特征分异的玉米种植面积提取[J].江苏农业学报,2017,(04):822.[doi:doi:10.3969/j.issn.1000-4440.2017.04.015]
 WANG Er-mei,LI Wei-guo,GU Xiao-he,et al.Planting area extraction of maize based on spectral features differentiation[J].,2017,(04):822.[doi:doi:10.3969/j.issn.1000-4440.2017.04.015]

备注/Memo

备注/Memo:
收稿日期:2016-05-16基金项目:江苏省自然科学基金项目(BK20141272);国家自然科学基金项目(31571669、91535106);江苏省产学研合作前瞻性联合研究项目(BY2016069-09);江苏省农业科技支撑项目(BE2014353);江苏省高校优势学科建设项目作者简介:印志同(1972-),男,江苏东海人,博士,副教授,主要从事作物遗传育种研究。(Tel)051487972178;(E-mail)ztyin@yzu.edu.cn通讯作者:邓德祥,(Tel)051487972078;(E-mail)yzdxdeng@126.com
更新日期/Last Update: 2016-11-01