[1]刘赵月,李蕊彤,李晶,等.盐碱胁迫下京尼平苷对玉米种子萌发及根系AsA-GSH循环的影响[J].江苏农业学报,2020,(04):842-850.[doi:doi:10.3969/j.issn.1000-4440.2020.04.006]
 LIU Zhao-yue,LI Rui-tong,LI Jing,et al.Effects of geniposide on seed germination and AsA-GSH cycle in root of maize under saline-alkali stress[J].,2020,(04):842-850.[doi:doi:10.3969/j.issn.1000-4440.2020.04.006]
点击复制

盐碱胁迫下京尼平苷对玉米种子萌发及根系AsA-GSH循环的影响()
分享到:

江苏农业学报[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2020年04期
页码:
842-850
栏目:
遗传育种·生理生化
出版日期:
2020-08-31

文章信息/Info

Title:
Effects of geniposide on seed germination and AsA-GSH cycle in root of maize under saline-alkali stress
作者:
刘赵月李蕊彤李晶顾万荣左师宇任晓松左月桃魏湜
(东北农业大学农学院,黑龙江哈尔滨150300)
Author(s):
LIU Zhao-yueLI Rui-tongLI JingGU Wan-rongZUO Shi-yuREN Xiao-songZUO Yue-tao WEI Shi
(College of Agriculture, Northeast Agricultural University, Harbin 150300, China)
关键词:
盐碱胁迫京尼平苷玉米抗坏血酸-谷胱甘肽循环
Keywords:
saline-alkali stressgeniposidemaizeascorbate-glutathione cycle
分类号:
S513
DOI:
doi:10.3969/j.issn.1000-4440.2020.04.006
文献标志码:
A
摘要:
为探究京尼平苷(Geniposide,GD)对盐碱胁迫下玉米种子萌发及玉米幼苗形态、生理特性变化的影响,以吉龙2(耐盐碱)和欣煊58(不耐盐碱)为材料,采用营养液水培法培养玉米幼苗,探讨150 mmol/L盐碱胁迫(NaCl∶Na2SO4∶NaHCO3∶Na2CO3=1∶9∶9∶1,摩尔浓度比)条件下,GD对玉米种子萌发、幼苗生长形态、根系抗坏血酸-谷胱甘肽循环(AsA-GSH循环)中抗氧化酶(APX、GR、MDHAR、DHAR)活性及抗氧化物(AsA、GSH)含量的影响。结果表明,在盐碱胁迫下,GD处理能有效缓解盐碱胁迫对玉米种子萌发和玉米幼苗生长的抑制程度;促进吉龙2和欣煊58根系可溶性蛋白质和可溶性糖含量增加,使渗透物质积累保持渗透调节平衡;提高抗氧化酶活性、抗氧化物含量以及AsA/DHA和GSH/GSSG。表明GD能提高植物细胞内的AsA-GSH循环运转效率和玉米幼苗的抗盐碱胁迫能力,本研究为黑龙江盐碱地种植玉米提供了理论依据。
Abstract:
To explore the effects of geniposide (GD) on the seed germination, morphological and physiological characteristics of maize seedlings under saline-alkali stress, Jilong 2 (tolerant to saline-alkali ) and Xinxuan 58 (intolerant to saline-alkali) were used as materials. The effects of GD on seed germination, seedling growth morphology, activities of antioxidant enzymes (APX, GR, MDHAR, DHAR) and contents of antioxidants (AsA, GSH) in the ascorbate-glutathione (AsA-GSH) cycle were investigated under 150 mmol/L saline-alkali stress (molar concentration ratio was NaCl∶Na2SO4∶NaHCO3∶Na2CO3=1∶9∶9∶1) by hydroponic experiment. The results showed that GD significantly promoted seed germination and the growth of maize seedlings under saline-alkali stress, promoted the increase of soluble protein and soluble sugar content in the roots of Jilong 2 and Xinxuan 58, maintained osmotic adjustment balance in osmotic material accumulation, improved antioxidant enzyme activity, the content of antioxidant, AsA/GSH and GSH/GSSG. It was found that GD could improve the efficiency of AsA/GSH cycle in plant cells and the resistance of maize seedlings under saline-alkali stress. The results of this study provide theoretical basis for maize production in saline-alkali land in Heilongjiang province.

参考文献/References:

[1]LITALIEN A, ZEEB B. Curing the earth: a review of anthropogenic soil salinization and plant-based strategies for sustainable mitigation[J]. Science of the Total Environment, 2020, 698: 134235.
[2]王晓炜,冉成,张巳奇,等. 苏打盐碱稻区不同栽培模式水稻产量构成及物质生产比较[J]. 华南农业大学学报, 2019, 40(6):45-50.
[3]詹振楠,纪婷. 探析植物对盐碱胁迫的响应机制[J]. 种子科技, 2019, 37(2):113.
[4]范惠玲,白生文,朱雪峰,等. 油菜及其近缘种种子萌发期耐盐碱性差异[J]. 作物杂志, 2019(3):178-184.
[5]陈雅昕,邓娇娇,周永斌,等. 不同种源黑果枸杞种子萌发对盐碱胁迫的响应[J]. 江苏农业科学, 2019, 47(6):96-100.
[6]赵霞,叶林,纳学伟,等. 盐碱胁迫下丛枝菌根真菌对紫花苜蓿渗透调节物质及抗氧化能力的影响[J]. 江苏农业学报, 2017, 33(4):782-787.
[7]ROBERTO C, VALDEZ-AGUILAR L A, CARTMILL D L, et al. Supplementary calcium and potassium improve the response of tomato(Solanum lycopersicum L.) to simultaneous alkalinity, salinity and boron stress[J]. Communications in Soil Science and Plant Analysis, 2016, 47(4):505-511.
[8]SINGH N, BHATLA S C. Nitric oxide and iron modulate heme oxygenase activity as a long distance signaling response to salt stress in sunflower seedling cotyledons[J]. Nitric Oxide, 2016, 53:54-64.
[9]WANG Y, YE X Y, QIU X M, et al. Methylglyoxal triggers the heat tolerance in maize seedlings by driving AsA-GSH cycle and reactive oxygen species-/methylglyoxal-scavenging system[J]. Plant Physiology and Biochemistry, 2019, 138:91-99.
[10]乔雪涛,何欣燕,何俊,等. 不同秸秆填埋量对盐碱土水盐运移及垂柳反射光谱的影响[J]. 生态学报, 2018, 38(22):8107-8117.
[11]张春宵,李淑芳,金峰学,等. 用3种方法定位玉米萌发期和苗期的耐盐和耐碱相关性状QTL[J]. 作物学报, 2019, 45(4):508-521.
[12]张旭龙,马淼,吴振振,等. 不同油葵品种对盐碱地根际土壤酶活性及微生物群落功能多样性的影响[J]. 生态学报, 2017, 37(5):1659-1666.
[13]张毅,石玉,胡晓辉. 外源亚精胺对盐碱胁迫下番茄幼苗光合特性的影响[J]. 西北农林科技大学学报(自然科学版), 2016, 44(2):144-150.
[14]闫改各,周建. 外源水杨酸对盐碱胁迫下海滨锦葵生长、Na+富集与转运的影响[J]. 河南科技学院学报(自然科学版), 2019, 47(2):10-15.
[15]靳晓青. 外源γ-氨基丁酸调控活性氧和叶绿素代谢增强甜瓜幼苗盐碱胁迫耐性[D]. 杨凌:西北农林科技大学, 2019.
[16]李彩凤,刘丹,邹春雷,等. 盐碱胁迫下喷施BR对甜菜光系统Ⅱ和氮代谢关键酶的影响[J]. 东北农业大学学报, 2018, 49(8):39-47.
[17]YANG S, KUANG G, JIANG R, et al. Geniposide protected hepatocytes from acetaminophen hepatotoxicity by down-regulating CYP 2E1 expression and inhibiting TLR 4/NF-κB signaling pathway[J]. International Immunopharmacology, 2019, 74: 105625.
[18]WU J, WANG B, LI M, et al. Network pharmacology identification of mechanisms of cerebral ischemia injury amelioration by Baicalin and Geniposide[J]. European Journal of Pharmacology, 2019, 859:172484.
[19]白涛,刘萌萌,刘涛,等. 京尼平苷对db/db鼠的降糖减重作用研究[J]. 中国临床药理学杂志, 2019, 35(14):1479-1481.
[20]MA S L, ZHANG C, ZHANG Z Y, et al. Geniposide protects PC12 cells from lipopolysaccharide-evoked inflammatory injury via up-regulation of miR-145-5p[J]. Artificial Cells, 2019, 47(1):2875-2881.
[21]张伯熙,詹选怀,单永年,等. 京尼平苷及其复方对黄瓜增产效果的研究[J]. 江西农业大学学报, 2003,25(3):351-355.
[22]张伯熙,单永年,叶显荣,等. 京尼平苷对小麦产量影响的研究[J]. 江西农业学报, 1999, 11(2):2-6.
[23]张伯熙,单永年,张劼,等. 京尼平苷及其复方对豇豆的增产效果[J]. 上海蔬菜, 1999(1):33-34.
[24]张伯熙,刘金定,单永年,等. 京尼平苷对棉花的增产效果[J]. 中国棉花, 1998(9):17.
[25]钱善勤,龙茜,陈盼,等. 京尼平苷对玉米幼苗生长的促进作用[J]. 江苏农业科学, 2015, 43(2):108-110.
[26]钱善勤,陈刚,朱梅,等. 京尼平苷对青菜叶绿素SPAD值及生长的影响[J]. 北方园艺, 2016(16):18-21.
[27]TRISHNA D, PYO J P, NARAYAN C D N, et al. Antioxidant activity of Gardenia jasminoides Ellis fruit extracts[J]. Food Chemistry, 2011, 128(3):697-703.
[28]FAN Y, GE Z, LUO A. In vitro antioxidant activity of polysaccharide from Gardenia jasminoides Ellis[J]. Journal of Medicinal Plant Research, 2011, 5(14):2963-2968.
[29]WANG S Y, JIAO H J, FAUST M. Changes in ascorbate, glutathione, and related enzyme activities during thidiazuron-induced bud break of apple[J]. Physiologia Plantarum, 1991, 82(2):231-236.
[30]ANDERSON M E. Determination of glutathione and glutathione disulfide in biological samples[J]. Methods and Enzymology, 1985, 113(4):548-555.
[31]NAKANO Y, ASADA K. Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts[J]. Plant and Cell Physiology, 1981, 22(5):867-880.
[32]李玉梅,冯颖,姜云天,等. 混合盐胁迫对东北薄荷种子萌发及幼苗生长的影响[J]. 西北农林科技大学学报(自然科学版), 2019, 47(10):52-62.
[33]王明华,李明,高祺,等. 改良剂对苏打盐碱土玉米幼苗生长和生理特性的影响[J]. 生态学杂志, 2016, 35(11):2966-2973.
[34]钱善勤,陈刚,朱梅,等. 京尼平苷对萝卜光合反应及生物量的影响[J]. 江苏农业科学, 2016, 44(3):171-174.
[35]田礼欣,李丽杰,刘旋,等. 外源海藻糖对盐胁迫下玉米幼苗根系生长及生理特性的影响[J]. 江苏农业学报, 2017, 33(4):754-759.
[36]景宇鹏,李跃进,蔺亚莉,等. 玉米耐Na2CO3胁迫的生理响应及耐盐碱性综合评价[J]. 中国土壤与肥料, 2019(5):179-186.
[37]王佺珍,刘倩,高娅妮,等. 植物对盐碱胁迫的响应机制研究进展[J]. 生态学报, 2017, 37(16):5565-5577.
[38]COUEE I, SULMON C, GOUESBET G, et al. Involvement of soluble sugars in reactive oxygen species balance and responses to oxidative stress in plants[J]. Journal of Experimental Botany, 2006, 57(3):449-459.
[39]KHOLOVA J, SAIRAM R K, MEENA R C, et al. Response of maize genotypes to salinity stress in relation to osmolytes and metal-ions contents, oxidative stress and antioxidant enzymes activity[J]. Biologia Plantarum(Prague), 2009, 53(2):249-256.
[40]张颖,钱善勤,陈娟. 京尼平苷对柳树叶片生理代谢的影响[J]. 江苏农业科学, 2018, 46(23):141-143.
[41]刘奕媺,于洋,方军. 盐碱胁迫及植物耐盐碱分子机制研究[J]. 土壤与作物, 2018, 7(2):201-211.
[42]刘涛,徐刚,高文瑞,等. ALA对低温胁迫下辣椒植株叶片中AsA-GSH循环的影响[J]. 江苏农业学报, 2011, 27(4):830-835.
[43]曲丹阳,顾万荣,李丽杰,等. 壳聚糖对镉胁迫下玉米幼苗叶片AsA-GSH循环的调控效应[J]. 植物科学学报, 2018, 36(2):291-299.
[44]SETH C S, REMANS T, KEUNEN E, et al. Phytoextraction of toxic metals:a central role for glutathione[J]. Plant, Cell & Environment, 2012, 35(2):334-346.
[45]PUKACKA S, RATAJCZAK E. Antioxidative response of ascorbate-glutathione pathway enzymes and metabolites to desication of recalcitrant Acer saccharinum seeds[J]. Journal of Plant Physiology, 2006, 163(12):1259-1266.
[46]孙德智,韩晓日,彭靖,等. 外源NO和SA对盐胁迫下番茄幼苗叶片膜脂过氧化及AsA-GSH循环的影响[J]. 植物科学学报, 2018, 36(4): 612-622.

相似文献/References:

[1]赵霞,叶林,纳学伟,等.盐碱胁迫下丛枝菌根真菌对紫花苜蓿渗透调节物质及抗氧化能力的影响[J].江苏农业学报,2017,(04):782.[doi:doi:10.3969/j.issn.1000-4440.2017.04.009]
 ZHAO Xia,YE Lin,NA Xue-wei,et al.Influence of arbuscular mycorrhizal fungus on the osmotic adjustment substance and antioxidant system of Medicago sativa under salt-alkaline stress[J].,2017,(04):782.[doi:doi:10.3969/j.issn.1000-4440.2017.04.009]
[2]刘昌壮,陶雨朝,杨富强,等.硫酸锰溶液浸种对玉米种子萌发期抗盐碱生理特性的影响[J].江苏农业学报,2023,(03):645.[doi:doi:10.3969/j.issn.1000-4440.2023.03.004]
 LIU Chang-zhuang,TAO Yu-zhao,YANG Fu-qiang,et al.Effects of soaking seeds with manganese sulfate solution on saline-alkali resistance of maize seeds during germination[J].,2023,(04):645.[doi:doi:10.3969/j.issn.1000-4440.2023.03.004]

备注/Memo

备注/Memo:
收稿日期:2020-01-06基金项目:国家重点研发计划项目(2016YFD0300103、2017YFD0300506);国家重点研发计划项目黑龙江省配套资金项目(GX18B029);东北农业大学“学术骨干”基金项目(17XG23);黑龙江省博士后科研启动基金项目(LBH-Q16031);东北农业大学大学生SIPT计划项目作者简介:刘赵月(1995-),女,黑龙江哈尔滨人,硕士研究生,主要从事玉米逆境生理生态及其调控技术的研究。(Tel)13339415750;(E-mail)liuzhaoyue95@163.com通讯作者:李晶,(E-mail)jingli1027@126.com;顾万荣,(E-mail)wanronggu@163.com
更新日期/Last Update: 2020-09-08