[1]孙彦坤,陈睿,李静,等.不同降雨年型下反枝苋和大豆光合特征的比较[J].江苏农业学报,2019,(03):554-563.[doi:doi:10.3969/j.issn.1000-4440.2019.03.008]
 SUN Yan-kun,CHEN Rui,LI Jing,et al.Comparison of photosynthetic characteristics between Amaranthus retroexus and Glycine max under different annual rainfall pattern[J].,2019,(03):554-563.[doi:doi:10.3969/j.issn.1000-4440.2019.03.008]
点击复制

不同降雨年型下反枝苋和大豆光合特征的比较()
分享到:

江苏农业学报[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2019年03期
页码:
554-563
栏目:
遗传育种·生理生化
出版日期:
2019-06-30

文章信息/Info

Title:
Comparison of photosynthetic characteristics between Amaranthus retroexus and Glycine max under different annual rainfall pattern
作者:
孙彦坤1陈睿1李静1鲁萍1李琦1白雅梅1张险峰2肖同玉1 李亦奇1
(1.东北农业大学资源与环境学院,黑龙江 哈尔滨 150030;2.东北农业大学实验实习与示范中心,黑龙江 哈尔滨 150030)
Author(s):
SUN Yan-kun1CHEN Rui1LI Jing1LU Ping1LI Qi1BAI Ya-mei1ZHANG Xian-feng2XIAO Tong-yu1LI Yi-qi1
(1.College of Resources and Environment, Northeast Agricultural University, Harbin 150030, China;2.Experimental Practice and Demonstration Center, Northeast Agricultural University, Harbin 150030, China)
关键词:
反枝苋大豆降雨年型光合特性叶绿素含量比叶面积
Keywords:
Amaranthus retroexusGlycine maxannual rainfall patternphotosynthetic characteristicschlorophyll contentspecific leaf area
分类号:
S459
DOI:
doi:10.3969/j.issn.1000-4440.2019.03.008
文献标志码:
A
摘要:
为揭示不同降雨年型下C4外来杂草与C3作物的竞争机制,以C4外来杂草反枝苋和C3作物大豆为研究对象,利用盆栽试验,设置3种降雨年型(高雨量、正常雨量和低雨量),比较单种和混种模式下两种植物的气体交换参数、光合色素含量和比叶面积的差异。结果显示,在相同降雨年型和栽培模式下,反枝苋的净光合速率、气孔导度、蒸腾速率及光合水分利用效率均高于大豆;反枝苋在三种降雨年型苗期均保持较高的净光合速率,不受降雨年型影响,但大豆净光合速率受降雨年型的影响显著;在低雨量年型下反枝苋光合水分利用效率最大, 大豆光合水分利用效率最小。两种植物的这些差别很可能是反枝苋成功入侵东北大豆田的重要原因。
Abstract:
The objective of this study was to investigate the competition mechanism between C4 exotic weeds and C3 crops under different annual rainfall pattern,C4 weed Amaranthus retroexus and C3 crop Glycine max were used as research materials. The three annual rainfall patterns (high rainfall, normal rainfall and low rainfall) were set up in a controlled pot experiment. The differences of photosynthetic characteristics, chlorophyll content and specific leaf area of the two plant species between the sole and mixed planting model were compared. The results showed that the net photosynthetic rate, stomatal conductance, evaporation rate and photosynthetic water use efficiency of A. retroexus were higher than those of G. max under the same annual rainfall pattern and planting model. The net photosynthetic rate of A. retroexus was always high in the seedling stage under each annual rainfall pattern, but the net photosynthetic rate of G. max was significantly affected by the annual rainfall pattern. The photosynthetic water use efficiency of A. retroexus was greatest in the low annual rainfall pattern, while the photosynthetic water use efficiency of G. max was the least. These differences between the two plants may be the important reasons for the invasion of A. retroexus into G. max fields in northeast China.

参考文献/References:

[1]PACHAURI R K, REISINGER A .Climate change 2007: Synthesis report[R].Spain:Valencia,2007.
[2]PARUELO J M, LAUENROTH W K. Relative abundance of plant functional types in grasslands and shrublands of North America[J]. Ecological Applications,1996,6:1212-1224.
[3]PARUELO J M, JOBBAGY E G, SALA O E, et al. Functional and structural convergence of temperate grassland and shrubland ecosystems[J]. Ecological Applications,1998,8:194-206.
[4]WINSLOW J C, HUNT J E R, PIPER S C. The influence of seasonal water availability on global C3 versus C4 grassland biomass and its implications for climate change research[J]. Ecological Modeling,2003,163:153-173.
[5]NIU S L, YUAN Z Y, ZHANG Y F, et al. Photosynthetic responses of C3 and C4 species to seasonal water variability and competition[J].Journal of Experimental Botany,2005,56(421):2867-2876.
[6]MONSON R K, LITTLEJOHN R O, WILLIAMS III G J. Photosynthetic adaptation to temperature in four species from the Colorado shortgrass steppe: a physiological model for coexistence[J]. Oecologia,1983,58:43-51.
[7]PATTERSON D T. Weeds in a changing climate[J]. Weed Science,1995,43:685-701.
[8]BUNCE J A. Longterm growth of alfalfa and orchard grass plots at elevated carbon dioxide[J]. Journal of Biogeochemistry, 1995,22:341-348.
[9]POTVIN C, VASSEUR L. Longterm CO2 enrichment of a pasture community[J]. Ecology, 1997,78:666-677.
[10]ZISKA L H. The impact of elevated CO2 on yield loss from a C3 and C4 weed in fieldgrown soybean[J]. Global Change Biology,2000, 6:899-905.
[11]鲁萍,金成功,张茜,等.反枝苋和大豆对降雨季节波动的生理生态响应[J].作物杂志,2017(2):114-120.
[12]张茜. 降雨波动对不同栽培模式下反枝苋光合特性的影响[D].哈尔滨:东北农业大学,2016.
[13]李晓晶,张宏军,倪汉文.反枝苋的生物学特征及防治[J].农药科学与管理,2004,25(3):13-16.
[14]陈光斗,赵万春,安成立.不同降水年份渭北不同降水年份渭北旱塬小麦高产栽培优化模式研究[J].干旱地区农业研究,1995,13(3):8-14.
[15]张云兰,王龙昌,周聪明,等.高温伏旱区旱地农作系统水分供需平衡特征与生态适应性研究[J]. 水土保持研究,2010,17(6):95-105.
[16]冯良山,孙占祥,肖继兵,等.不同微集水方式在不同降水年型对玉米产量的影响[J].东北农业大学学报,2011,42(1):50-54.
[17]丛雪,吴岩,鲁萍,等. 氮素波动对反枝苋和大豆最大净光合速率和光合氮利用效率的影响[J]. 作物杂志,2013(1): 73-77.
[18]徐广惠,王宏燕,刘佳. 抗草甘膦转基因大豆(RRS)对根际土壤细菌数量和多样性的影响[J]. 生态学报,2009,29(8): 4535-4541.
[19]李合生,孙群,赵世杰,等. 植物生理生化实验原理和技术[M] 北京:高等教育出版社,2000.
[20]王满莲,冯玉龙. 紫茎泽兰和飞机草的形态、生物量分配和光合特性对氮营养的响应[J].植物生态学报,2005,29(5): 697-705.
[21]王康满,侯元同. 山东归化植物一新记录属——银胶菊属[J].曲阜师范大学学报(自然科学版),2004,30(1):83-84.
[22]陈新微,李慧燕,刘红梅,等. 入侵种银胶菊和三叶鬼针草与本地种气体交换特性的比较[J]. 生态学报,2016, 36(18):5732-5740.
[23]POOTER L. Lightdependent changes in biomass allocation and their importance for growth of rain forest tree species[J].Functional Ecology,2001,15(1):113-123.
[24]FENG Y L,FU G L,ZHENG Y L. Specific leaf area relates to the differences in leaf construction cost, photosynthesis, nitrogen allocation, and use efficiencies between invasive and noninvasive alien congeners[J].Planta,2008,228:383-390.
[25]鲁萍,梁慧,王宏燕,等. 外来入侵杂草反枝苋的研究进展[J]. 生态学杂志, 2010, 29(8): 1662-1670.
[26]王建林,杨新民. 气孔导度和叶片内部导度制约C3和C4作物光合作用的比较分析[J]. 东北农业大学学报,2011,42(1): 129-132.
[27]RIZWAN Z, HAORAN D, MUHAMMAD A,et al. Potassium fertilizer improves drought stress alleviation potential in cotton by enhancing photosynthesis and carbohydrate metabolism[J].Environmental and Experimental Botany,2017,137:73-83.
[28]张云海,何念鹏,张光明,等. 氮沉降强度和频率对羊草叶绿素含量的影响[J].生态学报,2013,33(21):6786-6794.
[29]张茜,金成功,鲁萍,等. 降雨季节波动对反枝苋与大豆光合色素的影响[J].作物杂志,2016(1):154-161.
[30]乔振江, 蔡昆争,骆世明. 低磷和干旱胁迫对大豆植株干物质积累及磷效率的影响[J].生态学报,2011,31(19):5578-5587.
[31]董守坤,赵坤,刘丽君,等. 干旱胁迫对春大豆叶绿素含量和根系活力的影响[J].大豆科学, 2011, 30(6):949-953.
[32]GROTKOPP E, REJMA′NEK M, ROST T L. Toward a causal explanation of plant invasiveness: seedling growth and lifehistory strategies of 29 pine (Pinus) species[J]. American Naturalist, 2002,159:396-419.
[33]DENG X, YE W H, FENG H L, et al. Gas exchange characteristics of the invasive species Mikania micrantha and its indigenous congener M.cordata (Asteraceae) in South China[J]. Botanical Bulletin of Academia Sinica, 2004,45:213-220.
[34]BURNS J H. Relatedness and environment affect traits associated with invasive and noninvasive introduced Commelinaceae[J]. Ecological Applications, 2006,16:1367-1376.
[35]潘玉梅,唐赛春,韦春强,等. 不同光照和水分条件下鬼针草属入侵种与本地种生长、光合特征及表型可塑性的比较[J].生物多样性,2017,25 (12): 1257-1266.
[36]MA X Y, WU H W, JIANG W L, et al. Interference between redroot pigweed (Amaranthus retroflexus L.) and cotton (Gossypium hirsutum L.): Growth analysis[J]. PLoS ONE,2015,10(6): e0130475.
[37]LU P, LI J X, JIN C G, et al. Different growth responses of an invasive weed and a native crop to nitrogen pulse and competition[J]. PLoS ONE,2016,11(6):e0156285.

相似文献/References:

[1]刘朝茂,李成云.玉米与大豆间作对玉米叶片衰老的影响[J].江苏农业学报,2017,(02):322.[doi:doi:10.3969/j.issn.1000-4440.2017.02.013]
 LIU Chao-mao,LI Cheng-yun.Effects of maize/soybean intercropping on maize leaf senescence[J].,2017,(03):322.[doi:doi:10.3969/j.issn.1000-4440.2017.02.013]
[2]张令瑄,谢婷婷,王瑾,等.大田条件下UV-B 辐射增强对大豆根际土壤相关指标的影响[J].江苏农业学报,2016,(01):118.[doi:10.3969/j.issn.1000-4440.2016.01.018]
 ZHANG Ling-xuan,XIE Ting-ting,WANG Jin,et al.Soybean rhizosphere soil parameters in response to enhanced UV-B radiation under field condition[J].,2016,(03):118.[doi:10.3969/j.issn.1000-4440.2016.01.018]
[3]宁丽华,何晓兰,张大勇.大豆耐盐相关基因GmNcl1功能标记的开发及验证[J].江苏农业学报,2017,(06):1227.[doi:doi:10.3969/j.issn.1000-4440.2017.06.005]
 NING Li-hua,HE Xiao-lan,ZHANG Da-yong.Development and validation of the function marker of soybean salt tolerance gene GmNcl1[J].,2017,(03):1227.[doi:doi:10.3969/j.issn.1000-4440.2017.06.005]
[4]杨艳丽,杨勇,李大红,等.转桃PpCuZnSOD基因大豆的耐旱性[J].江苏农业学报,2018,(05):978.[doi:doi:10.3969/j.issn.1000-4440.2018.05.003]
 YANG Yan-li,YANG Yong,LI Da-hong,et al.Drought tolerance of transgenic soybean with PpCuZnSOD gene[J].,2018,(03):978.[doi:doi:10.3969/j.issn.1000-4440.2018.05.003]
[5]曹媛媛,陈春,郭婷婷,等.亲和性促生菌DW12-L的定殖及其对大豆生长的影响[J].江苏农业学报,2019,(04):776.[doi:doi:10.3969/j.issn.1000-4440.2019.04.004]
 CAO Yuan yuan,CHEN Chun,GUO Ting ting,et al.Colonization of soybean affinity rhizobacteria strain DW12-L and its effects on soybean growth[J].,2019,(03):776.[doi:doi:10.3969/j.issn.1000-4440.2019.04.004]
[6]丁俊男,于少鹏,李鑫,等.生物炭对大豆生理指标和农艺性状的影响[J].江苏农业学报,2019,(04):784.[doi:doi:10.3969/j.issn.1000-4440.2019.04.005]
 DING Jun nan,YU Shao peng,LI Xin,et al.Effects of biochar application on soybean physiological indices and agronomic traits[J].,2019,(03):784.[doi:doi:10.3969/j.issn.1000-4440.2019.04.005]
[7]曹帅,杜仲阳,刘鹏,等.碱胁迫对大豆光合特性及内源激素含量的影响[J].江苏农业学报,2020,(02):284.[doi:doi:10.3969/j.issn.1000-4440.2020.02.005]
 CAO Shuai,DU Zhong-yang,LIU Peng,et al.Effects of alkaline stress on photosynthetic characteristics and endogenous hormone contents of soybean[J].,2020,(03):284.[doi:doi:10.3969/j.issn.1000-4440.2020.02.005]
[8]邱爽,张军,何佳琦,等.大豆GmGolS2-1基因高温胁迫诱导表达及转基因烟草鉴定[J].江苏农业学报,2021,(01):38.[doi:doi:10.3969/j.issn.1000-4440.2021.01.005]
 QIU Shuang,ZHANG Jun,HE Jia-qi,et al.Expression of soybean GmGolS2-1 induced by heat stress and identification of GmGolS2-1 transgenic tobacco[J].,2021,(03):38.[doi:doi:10.3969/j.issn.1000-4440.2021.01.005]
[9]张斌,陈丽娟,李其华,等.栽培大豆GRAS转录因子家族基因鉴定及其盐胁迫下表达模式分析[J].江苏农业学报,2021,(02):296.[doi:doi:10.3969/j.issn.1000-4440.2021.02.004]
 ZHANG Bin,CHEN Li-juan,LI Qi-hua,et al.Identification of gene of GRAS transcription factor family in cultivated soybean(Glycine max L.) and expression pattern analysis under salt stress[J].,2021,(03):296.[doi:doi:10.3969/j.issn.1000-4440.2021.02.004]
[10]张威,许文静,许亚男,等.基于CRISPR/Cas9基因编辑的高油酸大豆品系创制[J].江苏农业学报,2023,(02):321.[doi:doi:10.3969/j.issn.1000-4440.2023.02.003]
 ZHANG Wei,XU Wen-jing,XU Ya-nan,et al.Creation of high oleic acid soybean lines by CRISPR/Cas9[J].,2023,(03):321.[doi:doi:10.3969/j.issn.1000-4440.2023.02.003]

备注/Memo

备注/Memo:
收稿日期:2018-10-31 基金项目:国家自然科学基金项目(31770582);黑龙江省自然科学基金项目(C2017018);东北农业大学学术骨干项目(17XG08) 作者简介:孙彦坤(1966-),男,黑龙江伊春人,教授,主要从事农业生态与气候变化研究。(Tel)13796094769;(E-mail)yk_sun@163.com 通讯作者:鲁萍, (E-mail)lping1977@126.com
更新日期/Last Update: 2019-06-30