[1]孟力力,张俊,闻婧.干旱胁迫对彩叶草光合特性及叶片超微结构的影响[J].江苏农业学报,2015,(01):180-185.[doi:10.3969/j.issn.1000-4440.2015.01.028]
 MENG Li-li,ZHANG Jun,WEN Jing.Changes of photosynthetic characteristics of Coleus blumei and mesophyll cell ultrastructure in response to drought stress[J].,2015,(01):180-185.[doi:10.3969/j.issn.1000-4440.2015.01.028]
点击复制

干旱胁迫对彩叶草光合特性及叶片超微结构的影响()
分享到:

江苏农业学报[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2015年01期
页码:
180-185
栏目:
园艺
出版日期:
2015-02-28

文章信息/Info

Title:
Changes of photosynthetic characteristics of Coleus blumei and mesophyll cell ultrastructure in response to drought stress
作者:
孟力力1张俊2闻婧1
(1.江苏省农业科学院园艺研究所,江苏南京210014;2.江苏省农业科学院蔬菜研究所,江苏南京210014)
Author(s):
MENG Li-li1ZHANG Jun2WEN Jing1
(1.Institute of Horticulture,Jiangsu Academy of Agricultural Sciences,Nanjing 210014,China;2.Institute of Vegetable Crops,Jiangsu Academy of Agricultural Sciences,Nanjing 210014,China)
关键词:
彩叶草干旱胁迫光合生理特性叶片超微结构
Keywords:
Coleus blumeidrought stressphotosynthetic characteristicmesophyll cell ultrastructure
分类号:
S682.360.1
DOI:
10.3969/j.issn.1000-4440.2015.01.028
文献标志码:
A
摘要:
通过盆栽试验对彩叶草设置4种水分梯度模拟干旱胁迫处理,20 d后测量光合生理指标并观察叶片超微结构的变化。随着干旱胁迫程度的加深,彩叶草株高、茎粗、最大叶面积都呈下降趋势;净光合速率(Pn)、气孔导度(Gs)、蒸腾速率(Tr)呈下降趋势,胞间CO2浓度(Ci)呈先降后升趋势,水分利用率(WUE)、气孔限制值(Ls)呈先升后降趋势;光补偿点(LCP)升高,光饱和点(LSP)降低,最大净光合速率(Pmax)和表现光量子效率(AQY)降低,表明干旱胁迫对彩叶草光合系统造成了一定程度的损伤,其光能利用效率下降,出现光抑制现象。轻度和中度干旱胁迫下Pn降低是由气孔限制引起,而在重度干旱胁迫下则由非气孔限制起主要作用。随着干旱胁迫程度的加深,叶绿体结构逐渐受到破坏,基粒片层和基质片层逐渐扭曲。至重度干旱胁迫时,细胞膜边缘模糊甚至部分破裂消失,出现大量嗜锇颗粒;淀粉粒变形糊化,线粒体膜模糊。研究表明,适度的干旱胁迫(土壤含水量为60%65%)可提高彩叶草的水分利用率,辅以适当遮阴可减轻光抑制,提高光合速率。
Abstract:
Four levels of soil moisture treatments were applied to potted Coleus blumei to investigate the influence of drought stress on photosynthetic characteristics and ultrastructure of mesophyll cell. With the aggravation of drought stress, plant height, stem diameter and maximal leaf area reduced, net photosynthesis rate Pn, stomatal conductivity Gs and transpiration rate Tr droped, intercellular CO2 concentration Ci decreased at first and then increased, water use efficiency WUE and stomatal limitation Ls ascended firstly and then descended, light compensation points (LCP) increased, and light points and apparent quantum yield (AQY) dropped. The results indicated that a certain degree of damage to photosynthesis system was induced by drought stress, leading to the reduction of light use efficiency and photoinhibition of photosynthesis. Stomatal limitation played a leading role in the reduction of Pn under light or moderate drought stress which was caused by non-stomatal limitation under serious drought stress. As drought aggravated, chloroplast structures were gradually destroyed, and grana lamellae and stroma lamellae were contorted. Under severe drought stress, the edge of cell membrane got fuzzy, ruptured and dissappeared, a large number of osmiophilic particles appeared, starch grains were out of shape, and mitochodrial membrane got fuzzy. In summary, light drought stress (soil moisture 60%-65%) could enhance the WUE of C. blumei, and reduce photoinhibition and improve the photosynthetic rate when supplemented with shading.

参考文献/References:

[1]韦金河,孟力力,闻婧,等. 氮磷钾配方施肥对彩叶草生长发育的影响[J]. 江苏农业学报, 2013, 28(6): 1398-1402.
[2]周厚高,游天建,王文通,等. 彩叶草的品种分类与园林应用[J]. 广东园林, 2011(3): 57-61.
[3]刘洋,王飞,田治国,等. 8种园林草本植物挥发性物质的抑菌效果研究[J]. 西北农林科技大学学报: 自然科学版, 2009, 37(3): 141-145.
[4]靳容,张爱君,史新敏,等. 干旱胁迫下钾对甘薯幼苗光合特性及根系活力的影响[J]. 江苏农业学报,2014,30(5):992-996.
[5]李鹏,刘济明,颜强,等.干旱胁迫对小蓬竹繁殖和某些生理特性的影响[J].江苏农业科学,2014,42(8):181-184.
[6]王华华,黄俊骏,杨丽丹.大豆幼苗中抗坏血酸和谷胱甘肽对干旱胁迫的生理响应[J].江苏农业科学,2014,42(5):86-88.
[7]CORNIC G. Drought stress inhibits photosynthesis by decreasing stomatal aperture——not by affecting ATP synthesis[J]. Trends in Plant Science, 2000, 5(5): 187-188.
[8]SHANGGUAN Z P, SHAO M A, DYCKMANS J. Nitrogen nutrition and water stress effects on leaf photosynthetic gas exchange and water use efficiency in winter wheat[J]. Environmental and Experimental Botany, 2000, 44(2): 141-149.
[9]RANJBARFORDOEI A, SAMSON R, LEMEUR R, et al. Effects of osmotic drought stress induced by a combination of NaCl and polyethylene glycol on leaf water status, photosynthetic gas exchange, and water use efficiency of Pistacia khinjuk and P. mutica[J]. Photosynthetica, 2002, 40(2): 165-169.
[10]FLEXAS J, MEDRANO H. Drought inhibition of photosynthesis in C3 plants: stomatal and non-stomatal limitation revisited[J]. Annals of Botany, 2002, 89: 183-189.
[11]徐大全. 光合作用气孔限制分析中的一些问题 [J].植物生理学通讯, 1997, 33(4): 241.
[12]GUO W, LI B, HUANG Y, et al. Effects of different water stresses on eco-physiological characteristics of Hippophae rhamnoides seedlings[J]. Acta Botanica Sinica, 2002, 45(10): 1238-1244.
[13]李倩,王明,王雯雯,等. 华山新麦草光合特性对干旱胁迫的响应[J]. 生态学报, 2012, 32(13): 4278-4284.
[14]刘刚,张光灿,刘霞. 土壤干旱胁迫对黄栌叶片光合作用的影响[J]. 应用生态学报, 2010 (7): 1697-1701.
[15]罗明华,胡进耀,吴庆贵,等. 干旱胁迫对丹参叶片气体交换和叶绿素荧光参数的影响[J]. 应用生态学报, 2010,21(3):619-623.
[16]刘广勤,朱海军,周蓓蓓,等. 旱涝胁迫对薄壳山核桃光合特性和叶绿体超微结构的影响[J]. 江苏农业学报, 2013, 28(6): 1429-1433.
[17]吴建慧,郭瑶,崔艳桃. 水分胁迫对绢毛委陵菜叶绿体超微结构及光合生理因子的影响[J]. 草业科学, 2012, 29(3): 434-439.
[18]陈健辉,李荣华,郭培国,等. 干旱胁迫对不同耐旱性大麦品种叶片超微结构的影响[J]. 植物学报, 2011, 46(1): 28-36.
[19]BERRY J A, DOWNTON W J S. Environmental regulation of photosynthesis[J]. Photosynthesis, 1982, 2: 263-343. 
[20]NIJS I, FERRIS R, BLUM H, et al. Stomatal regulation in a changing climate: a field study using free air temperature increase (FATI) and free air CO2 enrichment (FACE)[J]. Plant, Cell & Environment, 1997, 20(8): 1041-1050.
[21]LEVITT J. Responses of plants to environmental stresses. Volume II. Water, radiation, salt, and other stresses [M]. New York: Academic Press, 1980: 607.
[22]KRATSCH H A, WISE R R. The ultrastructure of chilling stress [J]. Plant, Cell & Environment, 2000, 23(4): 337-350.
[23]SIMOVA-STOILOVA L, VASEVA I, GRIGOROVA B, et al. Proteolytic activity and cysteine protease expression in wheat leaves under severe soil drought and recovery[J]. Plant Physiology and Biochemistry, 2010, 48(2): 200-206. 
[24]FARQUHAR G D, SHARKEY T D. Stomatal conductance and photosynthesis[J]. Annual Review of Plant Physiology, 1982, 33(1): 317-345.
[25]AKHKHA A, BOUTRAA T, ALHEJELY A. The rates of photosynthesis, chlorophyll content, dark respiration, proline and abscicic acid (ABA) in wheat (Triticum durum) under water deficit conditions[J]. International Journal of Agriculture and Biology, 2011, 13(2): 215-221. 
[26]陈静,秦景,贺康宁,等. 水分胁迫对银水牛果生长及光合气体交换参数的影响[J]. 西北植物学报, 2009, 29(8): 1649-1655.
[27]吴建慧,郭瑶,崔艳桃. 自然失水胁迫对绢毛委陵菜叶片超微结构的影响[J]. 东北林业大学学报, 2011, 39(11): 53-55.
[28]张其德,卢从明,匡廷云. 大气 CO2 浓度升高对光合作用的影响[J]. 植物学通报, 1992, 9(4): 18-23.
[29]LLUS J, PUELAS J, MUNN-BOSCH S. Sustained accumulation of methyl salicylate alters antioxidant protection and reduces tolerance of holm oak to heat stress [J]. Physiologia Plantarum, 2005, 124(3): 353-361.

相似文献/References:

[1]佚名 佚名 佚名.三才期刊采编系统文章正在整理中…[J].江苏农业学报,2005,(01):5.
 XIE Xin,ZHAO Zhong.三才期刊采编系统文章正在整理中…[J].,2005,(01):5.
[2]佚名 佚名 佚名.三才期刊采编系统文章正在整理中…[J].江苏农业学报,2006,(01):5.
 XIE Xin,ZHAO Zhong.三才期刊采编系统文章正在整理中…[J].,2006,(01):5.
[3]熊洁,邹晓芬,邹小云,等.干旱胁迫对不同基因型油菜农艺性状和产量的影响[J].江苏农业学报,2015,(03):494.[doi:10.3969/j.issn.1000-4440.2015.03.005]
 XIONG Jie,ZOU Xiao-fen,ZOU Xiao-yun,et al.Effects of drought stress on agronomic traits and yield of different rapeseed genotypes[J].,2015,(01):494.[doi:10.3969/j.issn.1000-4440.2015.03.005]
[4]肇莹,杨镇,杨涛,等.植物内生菌醇提取物对草坪草抗旱性的影响[J].江苏农业学报,2015,(01):39.[doi:10.3969/j.issn.1000-4440.2015.01.006]
 ZHAO Ying,YANG Zhen,YANG Tao,et al.Influence of plant endophyte extract on turfgrass drought tolerance[J].,2015,(01):39.[doi:10.3969/j.issn.1000-4440.2015.01.006]
[5]张丽丽,徐碧玉,刘菊华,等.MaASR1基因通过乙烯途径提高拟南芥抗旱性的作用机制[J].江苏农业学报,2018,(03):511.[doi:doi:10.3969/j.issn.1000-4440.2018.03.005]
 ZHANG Li-li,XU Bi-yu,LIU Ju-hua,et al.The regulation mechanism of MaASR1 gene for improving the drought resistance of Arabidopsis by ethylene pathway[J].,2018,(01):511.[doi:doi:10.3969/j.issn.1000-4440.2018.03.005]
[6]麻云霞,李钢铁,张宏武,等.外源硅对酸枣生长和生理生化特征的影响[J].江苏农业学报,2018,(05):1113.[doi:doi:10.3969/j.issn.1000-4440.2018.05.021]
 MA Yun-xia,LI Gang-tie,ZHANG Hong-wu,et al.Effects of exogenous silicon on growth, physiological and biochemical characteristics of zizyphus jujube plant[J].,2018,(01):1113.[doi:doi:10.3969/j.issn.1000-4440.2018.05.021]
[7]葛道阔,曹宏鑫,杨余旺,等.干旱胁迫下油菜栽培模拟优化决策系统(Rape-CSODS)的订正及其检验[J].江苏农业学报,2019,(01):56.[doi:doi:10.3969/j.issn.1000-4440.2019.01.008]
 GE Dao-kuo,CAO Hong-xin,YANG Yu-wang,et al.Modification and verification of Rape-CSODS under drought stress[J].,2019,(01):56.[doi:doi:10.3969/j.issn.1000-4440.2019.01.008]
[8]陈丽,焦健,朱绍丹,等.油橄榄对牧草间作与干旱胁迫交互作用的根系生理响应[J].江苏农业学报,2019,(06):1434.[doi:doi:10.3969/j.issn.1000-4440.2019.06.024]
 CHEN Li,JIAO Jian,ZHU Shao-dan,et al.Root physiological response of olive to the interaction of pasture intercropping and drought stress[J].,2019,(01):1434.[doi:doi:10.3969/j.issn.1000-4440.2019.06.024]
[9]陈丽,焦健,朱绍丹,等.牧草间作对干旱胁迫下油橄榄根系形态特征的影响[J].江苏农业学报,2020,(01):39.[doi:doi:10.3969/j.issn.1000-4440.2020.01.006]
 CHEN Li,JIAO Jian,ZHU Shao-dan,et al.Effects of pasture intercropping on root morphological characteristics of olive under drought stress[J].,2020,(01):39.[doi:doi:10.3969/j.issn.1000-4440.2020.01.006]
[10]王韬远,陶冶,夏德美,等.外源喷施1-甲基环丙烯(1-MCP)对干旱胁迫下芍药幼苗生长的影响及作用机理[J].江苏农业学报,2020,(02):447.[doi:doi:10.3969/j.issn.1000-4440.2020.02.027]
 WANG Tao-yuan,TAO Ye,XIA De-mei,et al.Effects of spraying exogenous 1-methylcyclopropene(1-MCP) on growth of Paeonia lactiflora Pall. seedlings under drought stress and its mechanism[J].,2020,(01):447.[doi:doi:10.3969/j.issn.1000-4440.2020.02.027]

备注/Memo

备注/Memo:
收稿日期:2014-06-05 基金项目:江苏省农业科技自主创新基金项目[CX(12)5090] 作者简介:孟力力(1982-),女,山西晋中人,硕士,助理研究员,主要从事设施园艺特殊栽培研究。(Tel)025-84392652;(E-mail)menglili90@163.com
更新日期/Last Update: 2015-02-28