[1]周恩强,周瑶,姚梦楠,等.基于全长转录组的蚕豆WRKY基因家族分析及耐盐胁迫相关候选基因挖掘[J].江苏农业学报,2024,(01):14-30.[doi:doi:10.3969/j.issn.1000-4440.2024.01.002]
 ZHOU En-qiang,ZHOU Yao,YAO Meng-nan,et al.Analysis of WRKY gene family based on full-length transcriptome and mining of salt stress candidate genes in Vicia faba[J].,2024,(01):14-30.[doi:doi:10.3969/j.issn.1000-4440.2024.01.002]
点击复制

基于全长转录组的蚕豆WRKY基因家族分析及耐盐胁迫相关候选基因挖掘()
分享到:

江苏农业学报[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2024年01期
页码:
14-30
栏目:
遗传育种·生理生化
出版日期:
2024-01-30

文章信息/Info

Title:
Analysis of WRKY gene family based on full-length transcriptome and mining of salt stress candidate genes in Vicia faba
作者:
周恩强周瑶姚梦楠王学军赵娜缪亚梅王永强薛冬李波汪凯华顾春燕魏利斌
(江苏沿江地区农业科学研究所,江苏南通226012)
Author(s):
ZHOU En-qiangZHOU YaoYAO Meng-nanWANG Xue-junZHAO NaMIAO Ya-meiWANG Yong-qiangXUE DongLI BoWANG Kai-huaGU Chun-yanWEI Li-bin
(Jiangsu Yanjiang Institute of Agricultural Sciences, Nantong 226012, China)
关键词:
WRKY基因蚕豆全长转录组盐胁迫进化分析
Keywords:
WRKY geneVicia fabafull-length transcriptomesalt stressevolutionary analysis
分类号:
S551+.4
DOI:
doi:10.3969/j.issn.1000-4440.2024.01.002
文献标志码:
A
摘要:
WRKY基因是植物特有的转录因子基因,能够调控植物的生长发育和胁迫响应。为了鉴定蚕豆WRKY基因家族成员,揭示其进化关系并挖掘与盐胁迫相关的候选WRKY基因,本研究在完成蚕豆全长转录组测序(9个样品)和二代转录组测序(27个样品)的基础上,利用生物信息学方法对WRKY转录因子基因进行鉴定与分析,并通过拟南芥同源基因比对挖掘盐胁迫相关的候选VfWRKY基因。结果表明,蚕豆全长转录组测序共获得53.84 Gb数据量,通过比对和校正最终获得58 885条转录本序列信息;基于蚕豆全长转录组共鉴定出113个WRKY家族成员,氨基酸数目为153~737 aa,等电点为4.84~9.87,113个WRKY家族蛋白质全部定位于细胞核中;根据拟南芥WRKY家族系统发育特征,VfWRKY基因家族可分为3组,分别为group 1(38个VfWRKY)、group 2(61个VfWRKY)、group 3(14个VfWRKY);Motif 1和 Motif 3是VfWRKY基因家族的特征基序,并对应WRKY保守结构域,在进化过程中较为保守;VfWRKY基因家族主要富集在植物MAPK信号通路、植物与病原菌相互作用和剪接体3个通路中;通过同源比对,在蚕豆中发现14个盐胁迫相关候选WRKY基因,且主要在根中高表达。该研究结果为蚕豆的遗传学研究提供了丰富的参考数据,也为创制耐盐蚕豆新品种提供了基因信息。
Abstract:
The WRKY gene is a plant-specific transcription factor gene that regulates plant growth and development and stress response. In order to identify the WRKY gene family members of Vicia faba, reveal their evolutionary relationship and mine candidate WRKY genes related to salt stress, in this study, the WRKY transcription factor genes were identified and analyzed by bioinformatics methods based on the full-length transcriptome (nine samples) and second-generation transcriptome sequencing (27 samples) of Vicia faba, and the candidate VfWRKY genes related to salt stress were excavated by homologous gene alignment of Arabidopsis thaliana. The results showed that 53.84 Gb data were obtained from the full-length transcriptome sequencing of Vicia faba, and 58 885 transcript sequence information was finally obtained through alignment and correction. A total of 113 WRKY family members were identified based on the full-length transcriptome of Vicia faba, with amino acid numbers of 153-737 aa and isoelectric points of 4.84-9.87, all 113 WRKY family proteins were localized in the nucleus. According to the phylogenetic characteristics of Arabidopsis WRKY family, the VfWRKY gene family was divided into three groups: group 1 (38 VfWRKY), group 2 (61 VfWRKY), and group 3 (14 VfWRKY). Motif 1 and Motif 3 were characteristic motifs of the VfWRKY gene family and corresponded to the WRKY domain, which were relatively conserved during evolution. The VfWRKY gene family was mainly enriched in three pathways: plant-MAPK signaling pathway, plant-pathogen interaction pathway and spliceosome pathway. Fourteen candidate WRKY genes related to salt stress were found in Vicia faba by homology alignment, and they were mainly highly expressed in the roots. The results of this study can provide rich reference data for the genetics research of Vicia faba, and also provide gene information for creating new varieties of salt-tolerant Vicia faba.

参考文献/References:

[1]YAMAGUCHI-SHINOZAKI K, SHINOZAKI K. Transcriptional regulatory networks in cellular responses and tolerance to dehydration and cold stresses[J]. Annual Review of Plant Biology,2006,57:781-803.
[2]MUNNS R, TESTER M. Mechanisms of salinity tolerance[J]. Annual Review of Plant Biology,2008,59:651-681.
[3]FU L B, SHEN Q F, KUANG L H, et al. Metabolite profiling and gene expression of Na/K transporter analyses reveal mechanisms of the difference in salt tolerance between barley and rice[J]. Plant Physiology and Biochemistry,2018,130:248-257.
[4]毕晨曦,杨宇昕,于月华,等. 小麦bZIP家族转录因子的鉴定及其在盐胁迫条件下的表达分析[J].分子植物育种,2021,19(15):4887-4895.
[5]ULLAH A, SUN H, YANG X, et al. A novel cotton WRKY gene, GhWRKY6-like, improves salt tolerance by activating the ABA signaling pathway and scavenging of reactive oxygen species[J]. Physiologia Plantarum,2018,162(4):439-454.
[6]DU B, LIU H, DONG K, et al. Over-expression of an R2R3 MYB gene, MdMYB108L, enhances tolerance to salt stress in transgenic plants[J]. International Journal of Molecular Sciences,2022,23(16):9428.
[7]李岢,周春江. 植物WRKY转录因子的研究进展[J].植物生理学报,2014,50(9):1329-1335.
[8]EULGEM T, RUSHTON P J, ROBATZEK S, et al. The WRKY superfamily of plant transcription factors[J]. Trends in Plant Science,2000,5(5):199-206.
[9]XIE T, CHEN C J, LI C H, et al. Genome-wide investigation of WRKY gene family in pineapple:evolution and expression profiles during development and stress[J]. BMC Genomics,2018,19:1-18.
[10]WU K L, GUO Z J, WANG H H, et al. The WRKY family of transcription factors in rice and Arabidopsis and their origins[J]. DNA Research,2005,12(1):9-26.
[11]SCHMUTZ J, CANNON S B, SCHLUETER J, et al. Genome sequence of the palaeopolyploid soybean[J]. Nature,2010,463(7278):178-183.
[12]苏文娟,曹瑞兰,周增亮,等. 油茶WRKY基因家族鉴定及逆境胁迫表达分析[J].中南林业科技大学学报,2023,43(3):155-166,174.
[13]郝青婷,高伟,闫虎斌,等. 绿豆WRKY基因家族的全基因组鉴定及生物信息学分析[J].西北农林科技大学学报(自然科学版),2023,51(5):59-71,81.
[14]ZHOU L, WANG N N, GONG S Y, et al. Overexpression of a cotton (Gossypium hirsutum) WRKY gene, GhWRKY34, in Arabidopsis enhances salt-tolerance of the transgenic plants[J]. Plant Physiology and Biochemistry,2015,96:311-320.
[15]BO C, CAI R H, FANG X, et al. Transcription factor ZmWRKY20 interacts with ZmWRKY115 to repress expression of ZmbZIP111 for salt tolerance in maize[J]. The Plant Journal,2022,111(6):1660-1675.
[16]BABITHA K C, RAMU S V, PRUTHVI V, et al. Co-expression of at bHLH17 and at WRKY28 confers resistance to abiotic stress in Arabidopsis[J]. Transgenic Research,2013,22:327-341.
[17]ZHANG Y Z, LI P, NIU Y Q, et al. Evolution of the WRKY66 gene family and its mutations generated by the CRISPR/Cas9 system increase the sensitivity to salt stress in Arabidopsis[J]. International Journal of Molecular Sciences,2023,24(4):3071.
[18]JIANG Y Q, DEYHOLOS M K. Functional characterization of Arabidopsis NaCl-inducible WRKY25 and WRKY33 transcription factors in abiotic stresses[J]. Plant Molecular Biology,2009,69:91-105.
[19]SHEN Y, CHI Y H, LU S, et al. Involvement of JMJ15 in the dynamic change of genome-wide H3K4me3 in response to salt stress[J]. Frontiers in Plant Science,2022,13:1009723.
[20]WU X, XU J N, MENG X N, et al. Linker histone variant HIS1-3 and WRKY1 oppositely regulate salt stress tolerance in Arabidopsis[J]. Plant Physiology,2022,189(3):1833-1847.
[21]LI P, LI X W, JIANG M. CRISPR/Cas9-mediated mutagenesis of WRKY3 and WRKY4 function decreases salt and Me-JA stress tolerance in Arabidopsis thaliana[J]. Molecular Biology Reports,2021,48(8):5821-5832.
[22]SCARPECI T E, ZANOR M I, MUELLER-ROEBER B, et al. Overexpression of AtWRKY30 enhances abiotic stress tolerance during early growth stages in Arabidopsis thaliana[J]. Plant Molecular Biology,2013,83:265-277.
[23]KRISHNAMURTHY P, VISHAL B, BHAL A, et al. WRKY9 transcription factor regulates cytochrome P450 genes CYP94B3 and CYP86B1, leading to increased root suberin and salt tolerance in Arabidopsis[J]. Physiologia Plantarum,2021,172(3):1673-1687.
[24]CHEN H, LAI Z B, SHI J W, et al. Roles of Arabidopsis WRKY18, WRKY40 and WRKY60 transcription factors in plant responses to abscisic acid and abiotic stress[J]. BMC Plant Biology,2010,10(1):1-15.
[25]HU Y, CHEN L, WANG H P, et al. Arabidopsis transcription factor WRKY8 functions antagonistically with its interacting partner VQ 9 to modulate salinity stress tolerance[J]. The Plant Journal,2013,74(5):730-745.
[26]ALI M A, AZEEM F, NAWAZ M A, et al. Transcription factors WRKY11 and WRKY17 are involved in abiotic stress responses in Arabidopsis[J]. Journal of Plant Physiology,2018,226:12-21.
[27]杨俊品,罗菊枝. 中国蚕、豌豆育种进展[J].西南农业学报1996,9(增刊1):142-146.
[28]田莹莹. 蚕豆籽粒大小的QTL分析[D].西宁:青海大学,2018.
[29]PUNTA M, COGGILL P C, EBERHARDT R Y, et al. The Pfam protein families database[J]. Nucleic Acids Research,2012,40(1):290-301.
[30]SUBRAMANIAN B, GAO S H, LERCHER M J, et al. Evolview v3:a webserver for visualization, annotation, and management of phylogenetic trees[J]. Nucleic Acids Research,2019,47(1):270-275.
[31]CHEN C J, CHEN H, ZHANG Y, et al. TBtools:an integrative toolkit developed for interactive analyses of big biological data[J]. Molecular Plant,2020,13(8):1194-1202.
[32]BAILEY T L, BODEN M, BUSKE F A, et al. MEME SUITE:tools for motif discovery and searching[J]. Nucleic Acids Research,2009,37(S2):202-208.
[33]JAYAKODI M, GOLICZ A A, KREPLAK J, et al. The giant diploid faba genome unlocks variation in a global protein crop[J]. Nature,2023,615(7953):652-659.
[34]WANG H P, CHEN W Q, XU Z Y, et al. Functions of WRKYs in plant growth and development[J]. Trends in Plant Science,2023,28(6):630-645.
[35]ZHOU H, ZHU W, WANG X C, et al. A missense mutation in WRKY32 converts its function from a positive regulator to a repressor of photomorphogenesis[J]. The New Phytologist,2021,235(1):111-125.
[36]HUNG F Y, SHIH Y H, LIN P Y, et al. WRKY63 transcriptional activation of COOLAIR and COLDAIR regulates vernalization-induced flowering[J]. Plant Physiology,2022,190(1):532-547.
[37]LI W X, PANG S Y, LU Z G, et al. Function and mechanism of WRKY transcription factors in abiotic stress responses of plants[J]. Plants,2020,9(11):1515.
[38]WANG L J, GUO D Z, ZHAO G D, et al. Group IIc WRKY transcription factors regulate cotton resistance to Fusarium oxysporum by promoting GhMKK2-mediated flavonoid biosynthesis[J]. New Phytologist,2022,236(1):249-265.
[39]YIN M, SONG N, CHEN S Y, et al. NaKTI2, a Kunitz trypsin inhibitor transcriptionally regulated by NaWRKY3 and NaWRKY6, is required for herbivore resistance in Nicotiana attenuata[J]. Plant Cell Reports,2021,40:97-109.
[40]刘晨,曹小汉,殷丹丹,等. MAPK信号通路调控植物响应非生物胁迫的研究进展[J].安徽农业科学,2022,50(18):9-16.
[41]ZHENG Z Y, MOSHER S L, FAN B, et al. Functional analysis of Arabidopsis WRKY25 transcription factor in plant defense against Pseudomonas syringae[J]. BMC Plant Biology,2007,7(1):1-13.
[42]ANDREASSON E, JENKINS T, BRODERSEN P, et al. The MAP kinase substrate MKS1 is a regulator of plant defense responses[J]. The EMBO Journal,2005,24(14):2579-2589.

相似文献/References:

[1]欧阳裕元,余东梅,杨梅.蚕豆主要农艺性状与单株产量的相关及通径分析[J].江苏农业学报,2016,(04):763.[doi:10.3969/j.issn.100-4440.2016.04.008]
 OUYANG Yu-yuan,YU Dong-mei,YANG Mei.Path analysis and correlation analysis between agronomic traits and yield in broad bean[J].,2016,(01):763.[doi:10.3969/j.issn.100-4440.2016.04.008]
[2]刘飞,杨春艳,谢建新.傅里叶变换红外光谱结合判别分析法诊断蚕豆病虫害[J].江苏农业学报,2015,(03):531.[doi:10.3969/j.issn.1000-4440.2015.03.011]
 LIU Fei,YANG Chun-yan,XIE Jian-xin.Diagnosis of diseases and pests of broad bean by Fourier transform infrared spectroscopy combining discriminant analysis[J].,2015,(01):531.[doi:10.3969/j.issn.1000-4440.2015.03.011]
[3]陈惠,唐明霞,宋居易,等.烫漂对蚕豆感官品质及过氧化物酶活性的影响[J].江苏农业学报,2015,(03):708.[doi:10.3969/j.issn.1000-4440.2015.03.038]
 CHEN hui,TANG Ming-xia,SONG Ju-yi,et al.Effect of blanching on sensory properties and activity of peroxidase in broad beans[J].,2015,(01):708.[doi:10.3969/j.issn.1000-4440.2015.03.038]
[4]涂丽琴,吴淑华,干射香,等.江苏省蚕豆上菜豆黄花叶病毒的分子鉴定[J].江苏农业学报,2019,(04):804.[doi:doi:10.3969/j.issn.1000-4440.2019.04.008]
 TU Li qin,WU Shu hua,GAN She xiang,et al.Molecular identification of bean yellow mosaic virus infecting Vicia faba from Jiangsu province[J].,2019,(01):804.[doi:doi:10.3969/j.issn.1000-4440.2019.04.008]
[5]高营,林云,袁星星,等.蚕豆VfGASA1基因的异源过表达延迟拟南芥开花[J].江苏农业学报,2021,(01):44.[doi:doi:10.3969/j.issn.1000-4440.2021.01.006]
 GAO Ying,LIN Yun,YUAN Xing-xing,et al.Heterologous overexpression of Vicia faba VfGASA1 gene delays flowering in transgenic Arabidopsis[J].,2021,(01):44.[doi:doi:10.3969/j.issn.1000-4440.2021.01.006]
[6]周仙莉,滕长才,张红岩,等.蚕豆遗传图谱与QTL定位研究进展[J].江苏农业学报,2021,(01):237.[doi:doi:10.3969/j.issn.1000-4440.2021.01.031]
 ZHOU Xian-li,TENG Chang-cai,ZHANG Hong-yan,et al.Research advance of genetic linkage map and QTL location in Vicia faba L.[J].,2021,(01):237.[doi:doi:10.3969/j.issn.1000-4440.2021.01.031]
[7]辛佳佳,张南峰,程华萍,等.江西省地方蚕豆种质资源遗传多样性分析及优异资源挖掘[J].江苏农业学报,2022,38(01):20.[doi:doi:10.3969/j.issn.1000-4440.2022.01.003]
 XIN Jia-jia,ZHANG Nan-feng,CHENG Hua-ping,et al.Genetic diversity analysis and excellent resources mining of local broad bean germplasm resources in Jiangxi province[J].,2022,38(01):20.[doi:doi:10.3969/j.issn.1000-4440.2022.01.003]
[8]赵娜,缪亚梅,姚梦楠,等.蚕豆种质资源籽粒表型与营养品质性状的多样性分析[J].江苏农业学报,2022,38(03):597.[doi:doi:10.3969/j.issn.1000-4440.2022.03.003]
 ZHAO Na,MIAO Ya-mei,YAO Meng-nan,et al.Diversity analysis on seed phenotypic and nutrient quality traits in faba bean germplasm resources[J].,2022,38(01):597.[doi:doi:10.3969/j.issn.1000-4440.2022.03.003]
[9]高晓晓,涂丽琴,孙枫,等.江苏蚕豆三叶草黄脉病毒的分子鉴定及全基因组结构特征分析[J].江苏农业学报,2022,38(05):1203.[doi:doi:10.3969/j.issn.1000-4440.2022.05.006]
 GAO Xiao-xiao,TU Li-qin,SUN Feng,et al.Molecular identification and genomic characterization of clover yellow vein virus isolated from broad bean in Jiangsu province[J].,2022,38(01):1203.[doi:doi:10.3969/j.issn.1000-4440.2022.05.006]

备注/Memo

备注/Memo:
收稿日期:2023-05-05基金项目:江苏省种业振兴揭榜挂帅项目[JBGS(2021)056];江苏省农业科技自主创新基金项目[CX(22)2011];国家食用豆产业技术体系项目(CARS-08-Z10);江苏沿江地区农业科学研究所青年科技基金项目[YJ(2022)002];江苏沿江地区农业科学研究所博士基金项目[YJBS(2021)001]作者简介:周恩强(1993-),男,安徽蚌埠人,硕士,研究实习员,主要从事豆类遗传育种研究。(E-mail)zhouenqiang0526@163.com通讯作者:魏利斌,(Tel)15936288927;(E-mail)libinwei2013@aliyun.com
更新日期/Last Update: 2024-03-17