[1]陈佳莉,代洪苇,周丽娟,等.茶树CsTLRs基因密码子偏好性与进化分析[J].江苏农业学报,2025,(05):996-1008.[doi:doi:10.3969/j.issn.1000-4440.2025.05.018]
 CHEN Jiali,DAI Hongwei,ZHOU Lijuan,et al.Codon bias and evolutionary analysis of CsTLRs in tea plant[J].,2025,(05):996-1008.[doi:doi:10.3969/j.issn.1000-4440.2025.05.018]
点击复制

茶树CsTLRs基因密码子偏好性与进化分析()
分享到:

江苏农业学报[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2025年05期
页码:
996-1008
栏目:
园艺
出版日期:
2025-05-31

文章信息/Info

Title:
Codon bias and evolutionary analysis of CsTLRs in tea plant
作者:
陈佳莉12代洪苇12周丽娟3童华荣12袁连玉12
(1.西南大学食品科学学院,重庆400715;2.川渝共建特色食品重庆市重点实验室,重庆400715;3.重庆北碚农业发展有限公司,重庆400715)
Author(s):
CHEN Jiali12DAI Hongwei12ZHOU Lijuan3TONG Huarong12YUAN Lianyu12
(1.College of Food Science, Southwest University, Chongqing 400715, China;2.Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing 400715, China;3.Chongqing Beibei Agricultural Development Co., Ltd., Chongqing 400715, China)
关键词:
茶树叶片毛状体CsTLRs基因密码子偏好性进化分析
Keywords:
tea plantleaf trichomesCsTLRs genescodon biasevolutionary analysis
分类号:
S571.1
DOI:
doi:10.3969/j.issn.1000-4440.2025.05.018
文献标志码:
A
摘要:
TLR基因具有调控植物毛状体生长发育的作用,而叶片毛状体(茸毛)是茶树[Camellia sinensis (L.)]的重要形态特征之一,在茶树的生理、生态和茶叶品质方面均发挥着重要作用。本研究利用CodonW、EMBOSS等软件,通过中性绘图、奇偶偏好性分析(PR2-plot)等多种分析方法,对茶树CsTLRs基因的密码子参数、亲缘关系以及异源表达受体等方面进行分析。结果表明,茶树CsTLRs基因密码子使用偏好性较弱,偏好性形成主要来源于自然选择;筛选出20个最优密码子,多以A/U结尾; 编码序列(CDS)和相对同义密码子使用度(RSCU)聚类分析结果都显示,茶树CsTLRs基因与杨树、黄瓜亲缘关系更近;烟草、拟南芥和番茄可作为CsTLRs异源转化的植物受体,酿酒酵母可作为微生物异源表达受体。综上,本研究结果明确了CsTLRs基因在调控茶树叶片毛状体发育时的密码子使用特征,为后续CsTLRs基因的功能研究提供了重要参考。
Abstract:
The TLR gene has the function of regulating the growth and development of plant trichomes. Leaf trichome is one of the important morphological characteristics of Camellia sinensis (L.), which plays an important role in the physiology and ecology of tea plant and tea quality. In this study, we conducted a comprehensive analysis of tea plant CsTLRs genes, including codon parameters, genetic relationship and heterologous expression hosts. This was achieved using multiple analytical approaches including neutral plot analysis, parity rule 2 plot (PR2-plot) analysis, implemented through softwares such as CodonW and EMBOSS. The results showed that the codon usage bias of CsTLRs genes was weak, and the bias was primarily dominated by natural selection. There were 20 optimal codons in CsTLRs genes, mostly ending with A/U. Both cluster analyses of the coding sequences (CDS) and relative synonymous codon usage (RSCU) revealed that CsTLRs genes in tea plant were phylogenetically closer to those in poplar (Populus) and cucumber (Cucumis sativus). For heterologous expression of CsTLRs genes from tea plant, tobacco (Nicotiana tabacum), Arabidopsis (Arabidopsis thaliana), and tomato (Solanum lycopersicum) could be selected as genetic transformation recipients, while the expression in microorganisms was better in Saccharomyces cerevisiae. In summary, this study analyzed the codon usage bias of CsTLRs genes in tea plants, elucidating their characteristic codon usage patterns during the regulation of leaf trichome development. These findings would provide references for future functional studies of CsTLRs genes.

参考文献/References:

[1]梁菲菲. 密码子偏性的影响因素及研究意义[J]. 畜牧与饲料科学,2010,31(1):118-119.
[2]HERSHBERG R, PETROV D A. Selection on codon bias[J]. Annual Review of Genetics,2008,42:287-299.
[3]PLOTKIN J B, KUDLA G. Synonymous but not the same:the causes and consequences of codon bias[J]. Nature Reviews Genetics,2011,12(1):32-42.
[4]LIU X Y, LI Y, JI K K, et al. Genome-wide codon usage pattern analysis reveals the correlation between codon usage bias and gene expression in Cuscuta australis[J]. Genomics,2020,112(4):2695-2702.
[5]PARVATHY S T, UDAYASURIYAN V, BHADANA V. Codon usage bias[J]. Molecular Biology Reports,2022,49(1):539-565.
[6]孙彬妹,刘少群,刘任坚,等. 茶树茸毛的研究进展[J]. 茶叶通讯,2018,45(4):3-6.
[7]STRATMANN J W, BEQUETTE C J. Hairless but no longer clueless:understanding glandular trichome development[J]. Journal of Experimental Botany,2016,67(18):5285-5287.
[8]HAUSER M T. Molecular basis of natural variation and environmental control of trichome patterning[J]. Frontiers in Plant Science,2014,5:320.
[9]BANDYOPADHYAY T, GOHAIN B, BHARALEE R, et al. Molecular landscape of Helopeltis theivora induced transcriptome and defense gene expression in tea[J]. Plant Molecular Biology Reporter,2015,33(4):1042-1057.
[10]宋亚康,张群峰,张洁,等. 茶毫氨基酸组成及矿质元素分析[J]. 茶叶科学,2017,37(4):339-346.
[11]郭桂义,孙慕芳,陈义,等. 茶叶茸毛的化学成分测定[J]. 食品科学,2011,32(8):244-247.
[12]LIU X Y, ZHOU F, WEN M C, et al. LC-MS and GC-MS based metabolomics analysis revealed the impact of tea trichomes on the chemical and flavor characteristics of white tea[J]. Food Research International,2024,191:114740.
[13]LONG P P, SU S X, WEN M C, et al. An insight into trichomes-deficiency and trichomes-rich black teas by comparative metabolomics:the impact of oxidized trichomes on metabolic profiles and infusion color[J]. Food Research International,2024,190:114638.
[14]LYU Z Y, LI J X, QIU S, et al. The transcription factors TLR1 and TLR2 negatively regulate trichome density and artemisinin levels in Artemisia annua[J]. Journal of Integrative Plant Biology,2022,64(6):1212-1228.
[15]DONG B R, XU Z H, WANG X X, et al. TrichomeLess regulator 3 is required for trichome initial and cuticle biosynthesis in Artemisia annua[J]. Molecular Horticulture,2024,4(1):10.
[16]LIU Y J, HOU H, JIANG X L, et al. A WD40 repeat protein from Camellia sinensis regulates anthocyanin and proanthocyanidin accumulation through the formation of MYB-bHLH-WD40 ternary complexes[J]. International Journal of Molecular Sciences,2018,19(6):1686.
[17]SUN B M, ZHU Z S, LIU R J, et al. TRANSPARENT TESTA GLABRA1 (TTG1) regulates leaf trichome density in tea Camellia sinensis[J]. Nordic Journal of Botany,2020,38(1):38.
[18] LI P H, FU J M, XU Y J, et al. CsMYB1 integrates the regulation of trichome development and catechins biosynthesis in tea plant domestication[J]. New Phytologist,2022,234(3):902-917.
[19]刘任坚,王玉源,刘少群,等. 茶树CsbHLH024和CsbHLH133转录因子功能鉴定[J]. 茶叶科学,2022,42(3):347-357.
[20]LIU X E. A more accurate relationship between ‘effective number of condons’ and GC3s under assumptions of no selection[J]. Computational Biology and Chemistry,2013,42:35-39.
[21]SUEOKA N. Near homogeneity of PR2-bias fingerprints in the human genome and their implications in phylogenetic analyses[J]. Journal of Molecular Evolution,2001,53(4/5):469-476.
[22]WRIGHT F. The ‘effective number of condons’ used in a gene[J]. Gene,1990,87(1):23-29.
[23]杨国锋,苏昆龙,赵怡然,等. 蒺藜苜蓿叶绿体密码子偏好性分析[J]. 草业学报,2015,24(12):171-179.
[24]胡莎莎,罗洪,吴琦,等. 苦荞叶绿体基因组密码子偏爱性分析[J]. 分子植物育种,2016,14(2):309-317.
[25]时慧,王玉,杨路成,等. 茶树抗寒调控转录因子ICE1密码子偏性分析[J]. 园艺学报,2012,39(7):1341-1352.
[26]赵洋,刘振,杨培迪,等. 密码子偏性分析方法及茶树中密码子偏性研究进展[J]. 茶叶通讯,2016,43(2):3-7.
[27]SHARP P M, LI W H. The condon adaptation index:a measure of directional synonymous condon usage bias,and its potential applications[J]. Nucleic Acids Research,1987,15(3):1281-1295.
[28]DURET L. tRNA gene number and condon usage in the C. elegans genome are co-adapted for optimal translation of highly expressed genes[J]. Trends in Genetics,2000,16(7):287-289.
[29]张文娟. 基于密码子水平的生物信息学分析及进化研究[D]. 上海:复旦大学,2006.
[30]严子成,蒋瑞平,梁浩伟,等. 川芎咖啡酸-O-甲基转移酶基因密码子偏好性与进化分析[J]. 应用与环境生物学报,2020,26(4):894-901.
[31]巫伟峰,陈明杰,陈发兴. ‘皇冠李’苹果酸转运体基因ALMT4、ALMT9和tDT密码子偏好性分析[J]. 农业生物技术学报,2020,28(1):42-57.
[32]BULMER M. The selection-mutation-drift theory of synonymous codon usage[J]. Genetics,1991,129(3):897-907.
[33]赵洋,杨阳,刘振,等. 茶树密码子用法分析[J]. 茶叶科学,2011,31(4):319-325.
[34]MUKHOPADHYAY P, BASAK S, GHOSH T C. Differential selective constraints shaping codon usage pattern of housekeeping and tissue-specific homologous genes of rice and Arabidopsis[J]. DNA Research,2008,15(6):347-356.
[35]ROMERO H, ZAVALA A, MUSTO H. Codon usage in Chlamydia trachomatis is the result of strand-specific mutational biases and a complex pattern of selective forces[J]. Nucleic Acids Research,2000,28(10):2084-2090.
[36]GU W J, ZHOU T, MA J M, et al. The relationship between synonymous codon usage and protein structure in Escherichia coli and Homo sapiens[J]. Biosystems,2004,73(2):89-97.
[37]谭淳月,刘勇,赖章凤,等. 茶树氧甲基转移酶基因密码子偏好性分析[J]. 江西农业大学学报,2023,45(3):652-662.
[38]PAN L L, WANG Y, HU J H, et al. Analysis of codon use features of stearoyl-acyl carrier protein desaturase gene in Camellia sinensis[J]. Journal of Theoretical Biology,2013,334:80-86.
[39]LI C, PAN L L, WANG Y, et al. Codon bias of the gene for chloroplast glycerol-3-phosphate acyltransferase in Camellia sinensis (L.) O. Kuntze[J]. Biochemical Systematics and Ecology,2014,55:212-218.
[40]周子维,常笑君,游芳宁,等. 茶树脂肪氧合酶(LOX)基因家族成员的分子进化及密码子偏好性分析[J]. 中国农业科技导报,2017,19(12):43-51.
[41]王占军,吴子琦,王朝霞,等. 3个茶树品种WOX基因家族的进化及密码子偏好性比较[J]. 南京林业大学学报(自然科学版),2022,46(2):71-80.
[42]YOU E, WANG Y, DING Z T, et al. Codon usage bias analysis for the spermidine synthase gene from Camellia sinensis (L.) O. Kuntze[J]. Genetics and Molecular Research,2015,14(3):7368-7376.
[43]胡振民,万青,李欢,等. 茶树CsNRT1.1基因密码子使用特性分析[J]. 江苏农业学报,2019,35(4):896-903.
[44]赵洋,刘振,杨培迪,等. 茶树CsActin1基因密码子偏性分析[J]. 茶叶通讯,2014,41(4):13-17.
[45]郭秀丽,王玉,杨路成,等. 茶树CBF1基因密码子使用特性分析[J]. 遗传,2012,34(12):1614-1623.
[46]原晓龙,郝佳波,王毅,等. 铁核桃叶绿体基因组密码子偏好性分析[J]. 分子植物育种,2020,18(20):6671-6677.
[47]陈何,王晓,王乐,等. 苋菜AtrNiR基因密码子偏好性与进化分析[J]. 亚热带农业研究,2021,17(1):48-56.
[48]佟岩,黄荟,王雨华. 森林茶园古茶树大理茶叶绿体基因组密码子偏好性及系统发育研究[J]. 茶叶科学,2023,43(3):297-309.
[49]高灿,樊智丰,马长乐. 黄药大头茶叶绿体基因组密码子偏好性分析[J]. 西南林业大学学报(自然科学),2023,43(5):66-76.
[50]冯琛,张云婷,肖婕,等. 黑莓RuTT12-1基因密码子偏好性分析[J]. 基因组学与应用生物学,2016,35(8):2133-2144.
[51]CHRISTIANSON M L. Codon usage patterns distort phylogenies from or of DNA sequences[J]. American Journal of Botany,2005,92(8):1221-1233.
[52]ZHOU H, WANG H, HUANG L F, et al. Heterogeneity in codon usages of sobemovirus genes[J]. Archives of Virology,2005,150(8):1591-1605.

相似文献/References:

[1]李春雷.氟对茶树抗坏血酸?谷胱甘肽循环系统的影响[J].江苏农业学报,2016,(05):1018.[doi:10.3969/j.issn.1000-4440.2016.05.010]
 LI Chun-lei.ASA-GSH cycle in tea plant exposed to fluoride application[J].,2016,(05):1018.[doi:10.3969/j.issn.1000-4440.2016.05.010]
[2]李春雷,倪德江.氟对幼龄茶树叶绿素含量及抗氧化酶活性的影响[J].江苏农业学报,2015,(05):1149.[doi:doi:10.3969/j.issn.1000-4440.2015.05.032]
 LI Chun-lei,NI De-jiang.Chlorophyll content and antioxidation of young tea plant exposed to fluoride[J].,2015,(05):1149.[doi:doi:10.3969/j.issn.1000-4440.2015.05.032]
[3]陈春林,田易萍,陈林波,等.基于荧光标记的紫娟茶树转录组EST-SSR标记开发[J].江苏农业学报,2018,(04):747.[doi:doi:10.3969/j.issn.1000-4440.2018.04.005]
 CHEN Chun-lin,TIAN Yi-ping,CHEN Lin-bo,et al.EST-SSR marker development of Zijuan tea tree transcriptome based on the fluorescent labeling[J].,2018,(05):747.[doi:doi:10.3969/j.issn.1000-4440.2018.04.005]
[4]胡振民,万青,李欢,等.茶树CsNRT1.1基因密码子使用特性分析[J].江苏农业学报,2019,(04):896.[doi:doi:10.3969/j.issn.1000-4440.2019.04.021]
 HU Zhen min,WAN Qing,LI Huan,et al.Analysis of codon usage features of CsNRT1.1 gene in Camellia sinensis[J].,2019,(05):896.[doi:doi:10.3969/j.issn.1000-4440.2019.04.021]
[5]王治会,岳翠男,李琛,等.江西省茶树种质化学特性多样性分析与鉴定评价[J].江苏农业学报,2020,(01):172.[doi:doi:10.3969/j.issn.1000-4440.2020.01.024]
 WANG Zhi-hui,YUE Cui-nan,LI Chen,et al.Diversity analysis and evaluation of chemical characteristics of tea germplasms in Jiangxi province[J].,2020,(05):172.[doi:doi:10.3969/j.issn.1000-4440.2020.01.024]
[6]赵洋,刘振,杨培迪,等.黄金茶种质资源生化成分的多样性分析[J].江苏农业学报,2021,(05):1285.[doi:doi:10.3969/j.issn.1000-4440.2021.05.025]
 ZHAO Yang,LIU Zhen,YANG Pei-di,et al.Diversity analysis of biochemical components in Huangjincha (Camellia sinensis) germplasm resources[J].,2021,(05):1285.[doi:doi:10.3969/j.issn.1000-4440.2021.05.025]
[7]邰玉玲,杨林,王欢欢,等.茶特征成分合成相关新转录因子鉴定[J].江苏农业学报,2021,(06):1534.[doi:doi:10.3969/j.issn.1000-4440.2021.05.023]
 TAI Yu-ling,YANG Lin,WANG Huan-huan,et al.Identification of new transcription factors related to the synthesis of characteristic components in tea[J].,2021,(05):1534.[doi:doi:10.3969/j.issn.1000-4440.2021.05.023]
[8]黄双杰,曹梦珍,陈凌芝,等.氮素胁迫条件下茶树根系发育及生长素的响应[J].江苏农业学报,2023,(03):814.[doi:doi:10.3969/j.issn.1000-4440.2023.03.023]
 HUANG Shuang-jie,CAO Meng-zhen,CHEN Ling-zhi,et al.Auxin response and tea plant roots formation regulated by nitrogen stress[J].,2023,(05):814.[doi:doi:10.3969/j.issn.1000-4440.2023.03.023]
[9]刘悦,曲浩,田易萍,等.转录组测序分析外源水杨酸诱导茶树热激蛋白基因的响应[J].江苏农业学报,2024,(04):607.[doi:doi:10.3969/j.issn.1000-4440.2024.04.004]
 LIU Yue,QU Hao,TIAN Yi-ping,et al.Transcriptome analysis of the response of heat shock protein encoding genes induced by salicylic acid in tea plants[J].,2024,(05):607.[doi:doi:10.3969/j.issn.1000-4440.2024.04.004]
[10]刘财国,吕水源,于文涛,等.北苑贡茶茶树种质遗传多样性及其与青心乌龙茶树的亲缘关系[J].江苏农业学报,2024,(05):935.[doi:doi:10.3969/j.issn.1000-4440.2024.05.018]
 LIU Caiguo,LYU Shuiyuan,YU Wentao,et al.Genetic diversity of Beiyuan tribute tea germplasms and their genetic relationship with Qingxinwulong[J].,2024,(05):935.[doi:doi:10.3969/j.issn.1000-4440.2024.05.018]

备注/Memo

备注/Memo:
收稿日期:2025-02-10基金项目:重庆市技术创新与应用发展重大专项(CSTB2022TIAD-CUX0021);重庆市农业农村委员会特色经济作物提质增效项目(F2023757);2024年宜宾市农业创新能力建设项目(2024NYCX012)作者简介:陈佳莉(2004-),女,重庆北碚人,本科,研究方向为茶树分子生物学。(E-mail) charli135@163.com 通讯作者:袁连玉,(E-mail) yuanlianyu@swu.edu.cn
更新日期/Last Update: 2025-06-24