参考文献/References:
[1]蒋卫杰,邓杰,余宏军. 设施园艺发展概况、存在问题与产业发展建议[J]. 中国农业科学,2015,48(17):3515-3523.
[2]喻景权,周杰. “十二五”我国设施蔬菜生产和科技进展及其展望[J]. 中国蔬菜,2016(9):18-30.
[3]李涛,于蕾,吴越,等. 山东省设施菜地土壤次生盐渍化特征及影响因素[J]. 土壤学报,2018,55(1):100-110.
[4]李世玉. 26份甜瓜材料耐盐性评价及外源NO对甜瓜盐胁迫的缓解效应[D]. 杨凌:西北农林科技大学,2022.
[5]叶林. 丛枝菌根真菌对西瓜盐碱胁迫的缓解效应及其调控机理[D]. 杨凌:西北农林科技大学,2019.
[6]HRIVASTAVA P, KUMAR R. Soil salinity: a serious environmental issue and plant growth promoting bacteria as one of the tools for its alleviation[J]. Saudi Journal of Biological Science,2015,22:123-131.
[7]王娟娟. 我国瓜菜产业现状与发展方向[J]. 中国蔬菜,2017(6):1-6.
[8]高天一,郝芳敏,臧全宇,等. 瓜类蔓枯病研究进展[J]. 中国瓜菜,2020,33(6):1-5.
[9]BAYSAL G, TIPIRDAMAZ R. The effect of salinity on lipid peroxidation and some antioxidant enzyme activities in two cucumber cultivars[J]. Acta Horticulturae,2007,729:199-203.
[10]刘东让,董邵云,苗晗,等. 黄瓜耐盐胁迫遗传育种研究进展[J]. 中国蔬菜,2021(7):14-23.
[11]薛琴. 甜瓜CmWRKY27调控盐胁迫响应的机理研究[D]. 杭州:浙江大学,2020.
[12]欧阳梦真. 西瓜ClWRKY20基因的耐低温和高盐功能鉴定及其调控机制研究[D]. 郑州:河南农业大学,2020.
[13]ROUPHAEL Y, CARDARELLI M, REA E, et al. Improving melon and cucumber photosynthetic activity, mineral composition, and growth performance under salinity stress by grafting onto Cucurbita hybrid rootstocks[J]. Photosynthetica,2012,50(2):180-188.
[14]LI L, SHU S, XU Q, et al. NO accumulation alleviates H2O2-dependent oxidative damage induced by Ca(NO3)2 stress in the leaves of pumpkin-grafted cucumber seedlings[J]. Physiologia Plantarum,2017,160(1):33-45.
[15]JIN X Q, LIU T, XU J J, et al. Exogenous GABA enhances muskmelon tolerance to salinity-alkalinity stress by regulating redox balance and chlorophyll biosynthesis[J]. BMC Plant Biology,2019,19(1):48.
[16]许姣姣. 多胺和一氧化氮在γ-氨基丁酸调节甜瓜盐碱耐性中的作用[D]. 杨凌:西北农林科技大学,2020.
[17]周梦迪,胡志程,付秋实,等. NaCl 胁迫对甜瓜生理指标及相关基因表达的影响[J]. 中国蔬菜, 2020(2):30-39.
[18]高婷,张杰,马瑞红,等. NaCl 胁迫对黑籽南瓜生长和生理特性的影响[J]. 江苏农业科学,2020,48(6):122-124.
[19]霍艳林,鲁顺保,关正君. 盐胁迫对晋南部分主栽黄瓜品种种子萌发特性的影响[J]. 江苏农业科学,2016,44(3):165-168.
[20]陈昆,张正亮,高磊. 碱蓬内生菌对盐胁迫西瓜幼苗形态建成及生理特性的影响[J]. 江苏农业科学,2022,50(9):116-122.
[21]张晓艳. 盐碱胁迫下甜瓜的生理响应及间作甜瓜生长动态研究[D]. 阿拉尔:塔里木大学,2021.
[22]KHOSHGOFTARMANESH A H, KHODARAHMI S, HAGHIGHI M. Effect of silicon nutrition on lipid peroxidation and antioxidant response of cucumber plants exposed to salinity stress[J]. Archives of Agronomy and Soil Science,2014,60(5):639-653.
[23]于爽,任玉兰,王晶晶,等. NaCl 对苦瓜幼苗生理特性的影响[J]. 东北农业大学学报,2010,41(3):43-47.
[24]姚金晓,朱家骝,杨飞,等. 海水胁迫下冬瓜幼芽期和幼苗期耐盐性评价及耐盐指标筛选[J]. 西北农业学报,2016,25(4):612-618.
[25]高玉红,闫生辉,邓黎黎. 不同盐胁迫对甜瓜幼苗根系和地上部生长发育的影响[J]. 江苏农业科学,2019,47(3):120-123.
[26]颜志明. 外源脯氨酸提高甜瓜幼苗耐盐性的生理调节功能[D]. 南京:南京农业大学,2011.
[27]张晓艳,李燕芳,黄鑫,等. 盐碱胁迫对不同甜瓜品种种子萌发及植株生长发育的影响[J]. 北方园艺,2021(10):47-52.
[28]李城城. 南瓜砧木嫁接缓解黄瓜盐胁迫伤害的光合作用与水杨酸调控机理[D]. 南京:南京农业大学,2019.
[29]张云起,刘世琦,杨凤娟,等. 耐盐西瓜砧木筛选及其耐盐机理的研究[J]. 西北农业学报,2003,12(4):105-108.
[30]靳晓青. 外源 γ-氨基丁酸调控活性氧和叶绿素代谢增强甜瓜幼苗盐碱胁迫耐性[D]. 杨凌:西北农林科技大学,2019.
[31]张月美. H2O2在亚精胺诱导自噬提高黄瓜幼苗耐盐性中的作用[D]. 南京:南京农业大学,2020.
[32]李荣,焦志阳,银珊珊,等. 喷施褪黑素对黄瓜幼苗耐盐效应研究[J]. 中国瓜菜,2023,36(1):53-58.
[33]刘斌,周延,王景燕,等. 不同品种苦瓜水培幼苗耐盐碱性研究初探[J]. 河南农业科学,2010,39(8):96-100.
[34]王春林,武芸,刘秀丽,等. 外源硫化氢对西葫芦幼苗耐盐性及生理特性的影响[J]. 中国瓜菜,2021,34(9):45-49.
[35]RAMESH S A, TYERMAN S D, GILLIHAM M, et al. γ-Aminobutyric acid (GABA) signalling in plants[J]. Cellular and Molecular Life Sciences,2017,74(9):1577-1603.
[36]KINNERSLEY A M, TURANO F J. Gamma aminobutyric acid (GABA) and plant responses to stress[J]. Critical Reviews in Plant Sciences,2000,19:479-509.
[37]XIANG L X, HU L P, XU W N, et al. Exogenous γ-aminobutyric acid improves the structure and function of photosystem II in muskmelon seedlings exposed to salinity-alkalinity stress[J]. PLoS One,2016,11(10):e0164847.
[38]TAN D X, HARDELAND R, MANCHESTER L C, et al. Functional roles of melatonin in plants,and perspectives in nutritional and agricultural science[J]. Journal of Experimental Botany,2012,63(2):577-597.
[39]NAWAZ M A, HUANG Y, BIE Z L, et al. Melatonin:current status and future perspectives in plant science[J]. Frontiers in Plant Science,2016,6:1230.
[40]王丽英. 褪黑素预处理对黄瓜幼苗耐盐性的影响[D]. 杨凌:西北农林科技大学,2014.
[41]史中飞. 外源褪黑素诱导黄瓜耐盐性的生理及分子机制研究[D]. 兰州:西北师范大学,2019.
[42]陈治舟. 外源褪黑素与嫁接及其互作对NaCl胁迫西瓜幼苗生长生理的影响[D]. 成都:四川农业大学,2020.
[43]孙源培. H2S在褪黑素诱导的黄瓜耐盐性中的作用[D]. 兰州:西北师范大学,2022.
[44]PL M, SZALAI G, JANDA T. Speculation:polyamines are important in abiotic stress signaling[J]. Plant Science,2015,237:16-23.
[45]桑婷. 外源亚精胺缓解黄瓜NaCl 胁迫伤害的差异蛋白及生理机制研究[D]. 南京:南京农业大学,2016.
[46]宫筱雯. 施用外源亚精胺提高黄瓜幼苗耐盐性的关键技术与机理探讨[D]. 南京:南京农业大学,2019.
[47]刘淑丽,张瑞,HUSSAIN S,等. 外源物质对水稻盐胁迫缓解效应研究进展[J]. 中国水稻科学,2023,37(1):1-15.
[48]李巧丽. 外源油菜素内酯对黄瓜耐盐性的调控[J]. 兰州:西北师范大学,2020.
[49]孙彤彤,武春成,宋士清. 外源水杨酸(SA)、油菜素内酯(BR) 浸种对Ca(NO3)2胁迫下黄瓜幼苗光合特性及叶片解剖结构的影响[J]. 江苏农业学报,2019,35(5):1184-1190.
[50]BESSON-BARD A, PUGIN A, WENDEHENNE D. New insights into nitric oxide signaling in plants[J]. Annual Review of Plant Biology,2008,59:21-39.
[51]LIU T, XU J J, LI J M, et al. NO is involved in JA- and H2O2-mediated ALA-induced oxidative stress tolerance at low temperatures in tomato[J]. Environmental and Experimental Botany,2019,161:334-343.
[52]NABI R B S, TAYADE R, HUSSAIN A, et al. Nitric oxide regulates plant responses to drought, salinity, and heavy metal stress[J]. Environmental and Experimental Botany,2019,161:120-133.
[53]吴旭红,冯晶旻. SNP对盐胁迫下南瓜种子萌发和幼苗光合碳代谢的影响[J]. 种子,2018,37(11):100-103.
[54]张振花,袁宏霞,刘洋,等. 温室番茄对增施不同浓度CO2的光合响应[J]. 植物营养与肥料学报,2018,24(4):1010-1018.
[55]束秀玉. CO2加富对盐胁迫下西瓜幼苗生长及生理生化特性的影响[J]. 河南农业科学,2020,49(12):107-114.
[56]WHITE P J, BROADLEY M R. Calcium in plants[J]. Annals of Botany,2003,92(4):487-511.
[57]程玉静,郭世荣,张润花,等. 外源硝酸钙对黄瓜幼苗盐胁迫伤害的缓解作用[J]. 西北植物学报,2009,29(9):1853-1859.
[58]WILKINS K A, MATTHUS E, SWARBRECK S M, et al. Calcium-mediated abiotic stress signaling in roots[J]. Frontiers in Plant Science,2016,7:1296.
[59]SNEDDEN W A, FROMM H. Calmodulin as a versatile calcium signal transducer in plants[J]. The New Phytologist,2001,151(1):35-66.
[60]王利. LaCl3对嫁接黄瓜耐盐性的影响及CmNHX4基因功能研究[J]. 武汉:华中农业大学,2018.
[61]程玉静,郭世荣,刘书仁,等. 外源硝酸钙对盐胁迫下黄瓜幼苗叶片抗氧化系统及膜质子泵活性的影响[J]. 生态学杂志,2010,29(5):892-898.
[62]张振兴,孙锦,郭世荣,等. 钙对盐胁迫下西瓜光合特性和果实品质的影响[J]. 园艺学报,2011,38(10):1929-1938.
[63]WANG S W, LIU P, CHEN D Q, et al. Silicon enhanced salt tolerance by improving the root water uptake and decreasing the ion toxicity in cucumber[J]. Frontiers in Plant Science,2015,6:759.
[64]朱永兴. 硅对黄瓜幼苗盐胁迫损伤的缓解效应及机理研究[D]. 杨凌:西北农林科技大学,2016.
[65]许世奇,何彦臻,李瑞,等. 不同改良剂对盐渍土西瓜耐盐性和生长的影响[J]. 农业环境科学学报,2023,42(10):2301-2312.
[66]缑天韵. 外源硅提高黄瓜耐盐性的生理机理探讨[D]. 杨凌:西北农林科技大学,2020.
[67]陈罡,管安琴,万云龙,等. 外源5-氨基乙酰丙酸(ALA)对盐胁迫下小型西瓜幼苗抗氧化酶活性的影响[J]. 江苏农业科学,2016,44(6):252-255.
[68]AKRAM N A,ASHRAF M. Regulation in plant stress tolerance by a potential plant growth regulator,5- aminolevulinic acid[J]. Journal of Plant Growth Regulation,2013,32:663-679.
[69]吴旭红,冯晶旻. 外源5-氨基乙酰丙酸对盐胁迫下南瓜种子萌发及耐盐性的影响[J]. 种子,2016,35(12):90-93.
[70]HE K, HE G, WANG C P, et al. Biochar amendment ameliorates soil properties and promotes Miscanthus growth in a coastal salinealkali soil[J]. Applied Soil Ecology,2020,155:103674.
[71]ELBASHIER M M A, SHAO X H, ALI A A S, et al. Effect of digestate and biochar amendments on photosynthesis rate, growth parameters, water use efficiency and yield of Chinese melon (Cucumis melo L. ) under saline irrigation[J]. Agronomy,2018,8(2):22.
[72]SHE D L, SUN X Q, GAMARELDAWLA A H D, et al. Benefits of soil biochar amendments to tomato growth under saline water irrigation[J]. Scientific Reports,2018,8:14743.
[73]张功臣,秦玉红,王波,等. 生物炭对盐胁迫下黄瓜叶片抗氧化酶活性和矿质元素累积的影响[J]. 土壤通报,2022,53(4):931-938.
[74]颜志明,孙锦,郭世荣. 外源脯氨酸对盐胁迫下甜瓜幼苗硝酸还原的影响[J]. 植物科学学报,2011,29(1):118-123.
[75]朱迎春,孙德玺,刘君璞,等. 壳寡糖对NaCl胁迫下耐盐性不同西瓜幼苗生理特性的影响[J]. 果树学报,2020,37(6):866-874.
[76]李琴,苏利荣,曾成城,等. 外源多元醇对盐胁迫下甜瓜幼苗生长和离子平衡的影响[J]. 中国土壤与肥料,2022(7):114-120.
[77]郭云平. NaCl 胁迫对西瓜幼苗的影响及腐植酸的缓解效应[D]. 泰安:山东农业大学,2016.
[78]朱迎春,刘君璞,邓云,等. 不同浸种液对盐胁迫下西瓜种子发芽的影响[J]. 中国瓜菜,2019,32(9):14-17.
[79]王伟奇,张蒙,秦肇辰,等. 南瓜耐盐性研究进展[J]. 中国蔬菜,2020(10):18-26.
[80]赵丽娜,张芙蓉,莫霏,等. 甜瓜盐碱逆境生理响应及相关基因研究进展[J]. 上海农业学报,2016,32(6):176-180.
[81]王迎儿,高旭,王毓洪,等. 南瓜耐盐种质的筛选鉴定及耐盐基因的标记[J]. 浙江农业学报,2015,27(3):372-379.
[82]高宁宁,常高正,康利允,等. 基于SRAP标记的甜瓜耐盐种质资源遗传多样性分析[J]. 西北植物学报,2019,39(1):68-75.
[83]朱红菊,刘文革,赵胜杰,等. NaCl胁迫下二倍体和同源四倍体西瓜幼苗DNA甲基化差异分析[J]. 中国农业科学,2014,47(20):4045-4055.
[84]ZHU H J, ZHAO S J, LU X Q, et al. Genome duplication improves the resistance of watermelon root to salt stress[J]. Plant Physiology and Biochemistry,2018,133:11-21.
[85]张锦程. 甜瓜类钙调磷酸酶B 亚基蛋白CmCBL1与CmCBL3在植物盐胁迫中功能分析[D]. 上海:上海交通大学,2019.
[86]钱玉磊,闫晋强,杨松光,等. 冬瓜抗氧化基因的克隆及其在非生物胁迫下的表达分析[J]. 广东农业科学,2022,49(7):33-41.
[87]储薇,郭信来,张晨,等. 丛枝菌根真菌-植物-根际微生物互作研究进展与展望[J]. 中国生态农业学报,2022,30(11):1709-1721.
[88]HASHEM A, ALQARAWI A A, RADHAKRISHNAN R, et al. Arbuscular mycorrhizal fungi regulate the oxidative system, hormones and ionic equilibrium to trigger salt stress tolerance in Cucumis sativus L[J]. Saudi Journal of Biological Sciences,2018,25(6):1102-1114.
[89]王策,谢宏鑫,刘润进,等. 丛枝菌根真菌调控根系构型与矿质元素平衡提高西瓜植株耐盐性的研究[J]. 菌物学报,2021,40(10):2800-2810.
[90]XIONG Y W, LI X W, WANG T T, et al. Root exudates-driven rhizosphere recruitment of the plant growth-promoting rhizobacterium Bacillus flexus KLBMP 4941 and its growth-promoting effect on the coastal halophyte Limonium sinense under salt stress[J]. Ecotoxicology and Environmental Safety,2020,194:110374.
[91]李咏梅. 提高黄瓜耐盐性细菌的筛选及其应用研究[D]. 南京:南京农业大学,2015.
[92]贾颜,李茜,李新艺,等. 含ACC脱氨酶的植物根际促生菌对月季切花品质与生理的影响[J]. 江苏农业科学,2022,50(16):147-153.
[93]YANG J W, KLOEPPER J W, RYU C M. Rhizosphere bacteria help plants tolerate abiotic stress[J]. Trends in Plant Science,2009,14(1):1-4.
[94]张天谣,徐俊,李文祥,等. 含ACC脱氨酶的植物根际促生菌对重瓣百合生长及采后品质的影响[J]. 江苏农业科学,2022,50(11):142-149.
[95]薛璐,杨倩,郭慧,等. 黄瓜耐盐根际促生菌的筛选及评价[J]. 中国瓜菜,2021,34(9):26-32.
[96]纪超,王晓辉,刘训理. 盐胁迫环境下植物根际促生菌的作用机制研究进展[J]. 生物技术通报,2020,36(4):131-143.
[97]钱兰华,钱玮,沈雪林,等. 耐盐促生菌的筛选、鉴定及其对黄瓜的促生作用[J]. 江苏农业科学,2019,47(18):160-163.
[98]李英楠. 设施黄瓜促生耐盐菌的筛选及其应用效果[D]. 郑州:河南农业大学,2020.
[99]王孟珂,国颖,汪贵斌,等. 不同生境对银杏雌、雄株嫁接苗叶中聚戊烯醇等成分积累的影响[J]. 南京林业大学学报(自然科学版),2023,47(1):121-128.
[100]徐慧春,王迪,杜志强,等. 嫁接对薄皮甜瓜耐盐性及果实品质的影响[J]. 黑龙江农业科学,2017(2):72-75.
[101]张蒙,周经明,马玮,等. 砧用中国南瓜种子萌发期耐盐性鉴定评价[J]. 中国瓜菜,2023,36(1):26-34.
[102]NIU M L, XIE J J, SUN J Y, et al. A shoot based Na+ tolerance mechanism observed in pumpkin-An important consideration for screening salt tolerant rootstocks[J]. Scientia Horticulturae,2017,218:38-47.
[103]朱士农,郭世荣. 嫁接对盐胁迫下西瓜植株体内Na+和K+含量及其分布的影响[J]. 园艺学报,2009,36(6):814-820.
[104]张新英. 嫁接对甜瓜苗期耐盐性和果实发育期品质的影响[D]. 北京:中囯农业科学院,2014.
[105]HUANG Y, BIE Z L, LIU P Y, et al. Reciprocal grafting between cucumber and pumpkin demonstrates the roles of the rootstock in the determination of cucumber salt tolerance and sodium accumulation[J]. Scientia Horticulturae,2013,149:47-54.
[106]ZHEN A, BIE Z L, HUANG Y, et al. Effects of salt-tolerant rootstock grafting on ultrastructure, photosynthetic capacity, and H2O2-scavenging system in chloroplasts of cucumber seedlings under NaCl stress[J]. Acta Physiologiae Plantarum,2011,33:2311-2319.
[107]孙静宇. 南瓜CmHKT1;1提高黄瓜嫁接苗耐盐性的机理及相关microRNAs 鉴定[D]. 武汉:华中农业大学,2019.
[108]孙小妹,陈思瑾,杨柳燕,等. 盐胁迫对嫁接西瓜幼苗生长及碳、氮、磷、钾化学计量特征的影响[J]. 干旱地区农业研究,2020,38(2):170-176.
[109]郭佩金,陈小玲,王智钰,等. 基于TOPSIS法对嫁接提高黄瓜耐Ca(NO3)2胁迫的综合评价[J]. 东北农业大学学报,2023,54(1):33-44.
[110]董立霞,谭军利,李淼,等. 覆砂下微咸水盐度和钠吸附比对水盐入渗及分布的影响[J]. 排灌机械工程学报,2022,40(12):1284-1289.
[111]翟中民,史文娟,张艳超,等. 水氮盐调控对膜下滴灌棉花产量的影响及耦合模型[J]. 排灌机械工程学报,2022,40(7):721-728.
相似文献/References:
[1]韩金龙,李慧,蔺经,等.核黄素对盐胁迫下杜梨叶片抗氧化系统的影响[J].江苏农业学报,2015,(04):893.[doi:10.3969/j.issn.1000-4440.2015.04.029]
HAN Jing-long,LI Hui,LIN Jing,et al.The regulatory role of riboflavin in antioxidant system of Pyrus betulaefolia in response to salt tolerance[J].,2015,(05):893.[doi:10.3969/j.issn.1000-4440.2015.04.029]
[2]安飞飞,简纯平,杨龙,等.木薯幼苗叶绿素含量及光合特性对盐胁迫的响应[J].江苏农业学报,2015,(03):500.[doi:10.3969/j.issn.1000-4440.2015.03.006]
AN Fei-fei,JIAN Chun-ping,YANG Long,et al.Chlorophyll contents and photosynthetic characteristics of cassava seedlings in response to NaCl stress[J].,2015,(05):500.[doi:10.3969/j.issn.1000-4440.2015.03.006]
[3]刘金龙,辛寒晓,范学明,等.盐胁迫下鱼蛋白多肽对樱桃番茄种子发芽特性的影响[J].江苏农业学报,2017,(03):662.[doi:doi:10.3969/j.issn.1000-4440.2017.03.026]
LIU Jin-long,XIN Han-xiao,FAN Xue-ming,et al.Effects of fish protein polypeptide on salt-stressed cherry tomato seed germination[J].,2017,(05):662.[doi:doi:10.3969/j.issn.1000-4440.2017.03.026]
[4]田礼欣,李丽杰,刘旋,等.外源海藻糖对盐胁迫下玉米幼苗根系生长及生理特性的影响[J].江苏农业学报,2017,(04):754.[doi:doi:10.3969/j.issn.1000-4440.2017.04.005]
TIAN Li-xin,LI Li-jie,LIU Xuan,et al.Root growth and physiological characteristics of salt-stressed maize seedlings in response to exogenous trehalose[J].,2017,(05):754.[doi:doi:10.3969/j.issn.1000-4440.2017.04.005]
[5]黄芳,徐珍珍,孟珊,等.盐胁迫下棉花LTR-反转座子的转录激活及在耐盐相关基因发掘中的应用[J].江苏农业学报,2017,(06):1220.[doi:doi:10.3969/j.issn.1000-4440.2017.06.004]
HUANG Fang,XU Zhen-zhen,MENG Shan,et al.The identification of long terminal repeat retrotransposons (LTR-RTs) with transcription activity under salt stress and its application in screening the candidate genes related to salt-tolerant in cotton[J].,2017,(05):1220.[doi:doi:10.3969/j.issn.1000-4440.2017.06.004]
[6]王旭明,赵夏夏,陈景阳,等.盐胁迫下水稻孕穗期SS和SPS活性与糖积累的响应及其相关性分析[J].江苏农业学报,2018,(03):481.[doi:doi:10.3969/j.issn.1000-4440.2018.03.001]
WANG Xu-ming,ZHAO Xia-xia,CHEN Jing-yang,et al.The response and correlations between carbohydrate accumulation and activities of SPS, SS at booting stage of rice under salt stress[J].,2018,(05):481.[doi:doi:10.3969/j.issn.1000-4440.2018.03.001]
[7]李敏,郭聪,李玉娟,等.旱柳转录组测序及生物学分析[J].江苏农业学报,2019,(02):271.[doi:doi:10.3969/j.issn.1000-4440.2019.02.005]
LI Min,GUO Cong,LI Yu-juan,et al.Transcriptome sequencing and biological analysis of willow (Salix matsudana)[J].,2019,(05):271.[doi:doi:10.3969/j.issn.1000-4440.2019.02.005]
[8]束晓春,李乃伟,汤兴利,等.NaCl处理对不同珊瑚菜种源光合生理和药用有效成分的影响[J].江苏农业学报,2019,(04):790.[doi:doi:10.3969/j.issn.1000-4440.2019.04.006]
SHU Xiao chun,LI Nai wei,TANG Xing li,et al.Effects of NaCl stress on photosynthetic physiology and active component of different Glehnia littoralis provenance[J].,2019,(05):790.[doi:doi:10.3969/j.issn.1000-4440.2019.04.006]
[9]王馨,闫永庆,殷媛,等.外源γ-氨基丁酸(GABA)对盐胁迫下西伯利亚白刺光合特性的影响[J].江苏农业学报,2019,(05):1032.[doi:doi:10.3969/j.issn.1000-4440.2019.05.005]
WANG Xin,YAN Yong-qing,YIN Yuan,et al.Effect of exogenous γ-aminobutyric acid(GABA) on photosynthetic characteristics of Nitraria sibirica pall under salt stress[J].,2019,(05):1032.[doi:doi:10.3969/j.issn.1000-4440.2019.05.005]
[10]石婧,刘东洋,张凤华.不同品种(品系)棉花对盐胁迫的生理响应及耐盐性评价[J].江苏农业学报,2020,(04):828.[doi:doi:10.3969/j.issn.1000-4440.2020.04.004]
SHI Jing,LIU Dong-yang,ZHANG Feng-hua.Physiological responses of different cotton cultivars (strains) to salt stress and salt tolerance evaluation[J].,2020,(05):828.[doi:doi:10.3969/j.issn.1000-4440.2020.04.004]