[1]刘悦,曲浩,田易萍,等.转录组测序分析外源水杨酸诱导茶树热激蛋白基因的响应[J].江苏农业学报,2024,(04):607-614.[doi:doi:10.3969/j.issn.1000-4440.2024.04.004]
 LIU Yue,QU Hao,TIAN Yi-ping,et al.Transcriptome analysis of the response of heat shock protein encoding genes induced by salicylic acid in tea plants[J].,2024,(04):607-614.[doi:doi:10.3969/j.issn.1000-4440.2024.04.004]
点击复制

转录组测序分析外源水杨酸诱导茶树热激蛋白基因的响应()
分享到:

江苏农业学报[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2024年04期
页码:
607-614
栏目:
遗传育种·生理生化
出版日期:
2024-04-30

文章信息/Info

Title:
Transcriptome analysis of the response of heat shock protein encoding genes induced by salicylic acid in tea plants
作者:
刘悦曲浩田易萍陈春林冉隆珣陈林波
(云南省农业科学院茶叶研究所/云南省茶树种质资源创新与配套栽培技术工程研究中心/云南省茶学重点实验室,云南昆明666201)
Author(s):
LIU YueQU HaoTIAN Yi-pingCHEN Chun-linRAN Long-xunCHEN Lin-bo
(Tea Research Institute, Yunnan Academy of Agricultural Sciences/Yunnan Technology Engineering Research Center of Tea Germplasm Innovation and Supporting Cultivation/Yunnan Provincial Key Laboratory of Tea Science, Kunming 666201, China)
关键词:
外源水杨酸茶树转录组差异表达基因热激蛋白
Keywords:
exogenous salicylic acidtea planttranscriptomedifferentially expressed geneheat shock protein
分类号:
S571.1
DOI:
doi:10.3969/j.issn.1000-4440.2024.04.004
摘要:
水杨酸是诱导植物抗性机制中重要的信号分子,外源喷施水杨酸能够调控多种防御相关蛋白质,提升农作物的抗病能力。开展外源水杨酸诱导茶树抗性机制的研究能够挖掘抗病基因,为茶树抗病育种提供分子基础。本研究采集外源喷施水杨酸0 h、6 h、12 h、24 h、48 h的茶树叶片进行转录组测序与分析,结果表明,外源喷施水杨酸6 h、12 h、24 h、48 h时茶树叶片内差异表达基因数量分别为9 360个、3 399个、596个、115个,外源水杨酸处理后各时间点均发生差异表达的基因共604个。KEGG功能富集结果显示,处理后6 h时富集于植物激素信号转导、植物-病原菌互作、核糖体、剪接体和碳代谢通路上的差异表达基因数量分别为95个、73个、121个、94个、154个。差异表达基因中有12个热激因子基因、40个热激蛋白基因和12个WRKY家族转录因子基因上调表达。处理48 h后,无上调表达的热激因子基因,但仍有28个热激蛋白基因上调表达。病程相关蛋白基因在检测阶段均上调表达。外源水杨酸的诱导作用在处理6 h时最为明显,并且引起了大量热激蛋白的响应。本研究结果为开展外源水杨酸诱导茶树抗病机制和茶树抗病分子育种研究提供了参考。
Abstract:
Salicylic acid is an important signal molecule in mechanism of plant resistance induction. Externally spraying salicylic acid can regulate multiple defense-related proteins and improve the resistance of crops. Research on the resistance mechanism of tea plants induced by exogenous salicylic acid can explore resistance genes and provide molecular basis for resistance breeding of tea plants. In this study, transcriptome sequencing and analysis were conducted on tea leaves collected at 0 h 6 h, 12 h, 24 h and 48 h of spraying exogenous salicylic acid. The results showed that numbers of differentially expressed genes in tea leaves at 6 h, 12 h, 24 h and 48 h of spraying exogenous salicylic acid were 9 360, 3 399, 596 and 115 respectively, 604 genes were differentially expressed at each time point after exogenous salicylic acid treatment. Results of KEGG functional enrichment showed that 95, 73, 121, 94 and 154 differentially expressed genes were respectively enriched in plant hormone signal transduction, plant-pathogen interaction, ribosome, spliceosome and carbon metabolic pathways six hours after treatment. Among the differentially expressed genes, 12 genes of heat shock protein transcriptional factors, 40 genes of heat shock proteins and 12 transcriptional factor genes of WRKY family were up-regulated. No up-regulated gene of HSP transcriptional factors was found after 48 h of treatment, but 28 HSP genes were upregulated. Expression of genes encoding pathogenesis related protein were up-regulated at the detection stage. The induction effect of exogenous salicylic acid was the most obvious at six hours of treatment and caused many responses of heat shock protein. The results of the study provided a reference for the research of disease-resistance mechanism of tea tree induced by exogenous salicylic acid and molecular breeding for disease resistance of tea tree.

参考文献/References:

[1]VLOT A C, DEMPSEY D A, KLESSIG D F. Salicylic acid, a multifaceted hormone to combat disease [J]. Annual Review of Phytopathology,2009,47:177-206.
[2]RIVAS-SAN VICENTE M, PLASENCIA J. Salicylic acid beyond defence: its role in plant growth and development [J]. Journal of Experimental Botany,2011,62(10):3321-3338.
[3]DING Y L, SUN T J, AO K V, et al. Opposite roles of salicylic acid receptors NPR1 and NPR3/NPR4 in transcriptional regulation of plant immunity [J]. Cell,2018,173(6):1454-1467.
[4]WANG F J, TAN H F, HUANG L H, et al. Application of exogenous salicylic acid reduces Cd toxicity and Cd accumulation in rice [J]. Ecotoxicology and Environmental Safety,2021,207:111198.
[5]NAGASHIMA Y, IWATA Y, ASHIDA M, et al. Exogenous salicylic acid activates two signaling arms of the unfolded protein response in Arabidopsis[J]. Plant and Cell Physiology,2014,55(10):1772-1778.
[6]FU Z Q, YAN S, SALEH A, et al. NPR3 and NPR4 are receptors for the immune signal salicylic acid in plants [J]. Nature,2012,486:228-232.
[7]SHI Y L, SHENG Y Y, CAI Z Y, et al. Involvement of salicylic acid in anthracnose infection in tea plants revealed by transcriptome profiling[J]. International Journal Molecular Sciences,2019,20(10):2439.
[8]王云锋,王春梅,王长秘,等. 外源水杨酸对稻瘟病菌效应蛋白BAS4过表达菌株耐受性的影响[J]. 南方农业学报,2017,48(12):2169-2175.
[9]LI X F, RIAZ M, SONG B Q, et al. Exogenous salicylic acid alleviates fomesafen toxicity by improving photosynthetic characteristics and antioxidant defense system in sugar beet[J]. Ecotoxicology and Environment Safety,2022,238:113587.
[10]WASSIE M, ZHANG W, ZHANG Q, et al. Exogenous salicylic acid ameliorates heat stress-induced damages and improves growth and photosynthetic efficiency in alfalfa (Medicago sativa L.)[J]. Ecotoxicology and Environment Safety,2020,191:110206.
[11]MAZZONI-PUTMAN S M, BRUMOS J, ZHAO C, et al. Auxin interactions with other hormones in plant development[J]. Cold Spring Harb Perspect Biol,2021,13(10):a039990.
[12]ZHUANG L L, CAO W, WANG J, et al. Characterization and functional analysis of fahsfc1b from festuca arundinacea conferring heat tolerance in Arabidopsis[J]. International Journal Molecular Sciences,2018,19(9):2702.
[13]WEI Y X, ZHU B B, LIU W, et al. Heat shock protein 90 co-chaperone modules fine-tune the antagonistic interaction between salicylic acid and auxin biosynthesis in cassava[J]. Cell Reports,2021,34(5):108717.
[14]DODDS P N, RATHJEN J P. Plant immunity: towards an integrated view of plant-pathogen interactions[J]. Nature Reviews Genetics,2010,11:539-548.
[15]YOGENDRA K N, KUMAR A, SARKAR K, et al. Transcription factor StWRKY1 regulates phenylpropanoid metabolites conferring late blight resistance in potato[J]. Journal of Experimental Botany,2015,66(22):7377-7389.
[16]UL HAQ S, KHAN A, ALI M, et al. Heat shock proteins: dynamic biomolecules to counter plant biotic and abiotic stresses[J]. International Journal Molecular Sciences,2019,20(21):5321.
[17]BACKER R, MAHOMED W, REEKSTING B J, et al. Phylogenetic and expression analysis of the NPR1-like gene family from Persea americana (Mill.) [J]. Frontiers in Plant Science,2015,29,6:300.
[18]FU Z Q, DONG X. Systemic acquired resistance: turning local infection into global defense[J]. Annual Review of Plant Biology,2013,64:839-863.
[19]VAN BUTSELAAR T, VAN DEN A G. Salicylic acid steers the growth-immunity tradeoff [J]. Trends in Plant Science,2020,25(6):566-576.
[20]CASTELL M J, MEDINA-PUCHE L, LAMILLA J, et al. NPR1 paralogs of Arabidopsis and their role in salicylic acid perception[J]. PLoS One,2018,13(12):e0209835.
[21]MANOHAR M, TIAN M, MOREAU M, et al. Identification of multiple salicylic acid-binding proteins using two high throughput screens[J]. Frontiers in Plant Science,2015,5:777.
[22]WANG X, YAN Y, LI Y, et al. GhWRKY40, a multiple stress-responsive cotton WRKY gene, plays an important role in the wounding response and enhances susceptibility to ralstonia solanacearum infection in transgenic Nicotiana benthamiana[J]. PLoS One,2014,9(4):e93577.
[23]CHEN J, MOHAN R, ZHANG Y Q, et al. NPR1 promotes its own and target gene expression in plant defense by recruiting CDK8[J]. Plant Physiology,2019,181(1):289-304.
[24]WARMERDAM S, STERKEN M G, SUKARTA O C A, et al. The TIR-NB-LRR pair DSC1 and WRKY19 contributes to basal immunity of Arabidopsis to the root-knot nematode Meloidogyne incognita[J]. BMC Plant Biology,2020,20(1):73.
[25]GOROVITS R, CZOSNEK H. The involvement of heat shock proteins in the establishment of tomato yellow leaf curl virus infection[J]. Frontiers in Plant Science,2017,8:355.
[26]SARKAR N K, KIM Y K, GROVER A. Rice sHsp genes: genomic organization and expression profiling under stress and development[J]. BMC Genomics,2009,10:393.
[27]VAN O G, LUKASIK E, VAN DEN BURG HARROLD A, et al. The small heat shock protein 20 RSI2 interacts with and is required for stability and function of tomato resistance protein I-2 [J]. The Plant Journal,2010,63(4):563-572.
[28]PAN X, ZHU B, LUO Y, et al. Unraveling the protein network of tomato fruit in response to necrotrophic phytopathogenic Rhizopus nigricans[J]. PLoS One,2013,8(9):e73034.
[29]ZHANG H, HUANG Q, YI L, et al. PAL-mediated SA biosynthesis pathway contributes to nematode resistance in wheat[J]. The Plant Journal,2021,107(3):698-712.
[30]冉隆珣,肖星,殷丽琼,等. 水杨酸和茉莉酸诱导茶树抗茶饼病研究初报[J]. 陕西农业科学,2022,68(4):32-35.

相似文献/References:

[1]李春雷.氟对茶树抗坏血酸?谷胱甘肽循环系统的影响[J].江苏农业学报,2016,(05):1018.[doi:10.3969/j.issn.1000-4440.2016.05.010]
 LI Chun-lei.ASA-GSH cycle in tea plant exposed to fluoride application[J].,2016,(04):1018.[doi:10.3969/j.issn.1000-4440.2016.05.010]
[2]李春雷,倪德江.氟对幼龄茶树叶绿素含量及抗氧化酶活性的影响[J].江苏农业学报,2015,(05):1149.[doi:doi:10.3969/j.issn.1000-4440.2015.05.032]
 LI Chun-lei,NI De-jiang.Chlorophyll content and antioxidation of young tea plant exposed to fluoride[J].,2015,(04):1149.[doi:doi:10.3969/j.issn.1000-4440.2015.05.032]
[3]陈春林,田易萍,陈林波,等.基于荧光标记的紫娟茶树转录组EST-SSR标记开发[J].江苏农业学报,2018,(04):747.[doi:doi:10.3969/j.issn.1000-4440.2018.04.005]
 CHEN Chun-lin,TIAN Yi-ping,CHEN Lin-bo,et al.EST-SSR marker development of Zijuan tea tree transcriptome based on the fluorescent labeling[J].,2018,(04):747.[doi:doi:10.3969/j.issn.1000-4440.2018.04.005]
[4]胡振民,万青,李欢,等.茶树CsNRT1.1基因密码子使用特性分析[J].江苏农业学报,2019,(04):896.[doi:doi:10.3969/j.issn.1000-4440.2019.04.021]
 HU Zhen min,WAN Qing,LI Huan,et al.Analysis of codon usage features of CsNRT1.1 gene in Camellia sinensis[J].,2019,(04):896.[doi:doi:10.3969/j.issn.1000-4440.2019.04.021]
[5]王治会,岳翠男,李琛,等.江西省茶树种质化学特性多样性分析与鉴定评价[J].江苏农业学报,2020,(01):172.[doi:doi:10.3969/j.issn.1000-4440.2020.01.024]
 WANG Zhi-hui,YUE Cui-nan,LI Chen,et al.Diversity analysis and evaluation of chemical characteristics of tea germplasms in Jiangxi province[J].,2020,(04):172.[doi:doi:10.3969/j.issn.1000-4440.2020.01.024]
[6]赵洋,刘振,杨培迪,等.黄金茶种质资源生化成分的多样性分析[J].江苏农业学报,2021,(05):1285.[doi:doi:10.3969/j.issn.1000-4440.2021.05.025]
 ZHAO Yang,LIU Zhen,YANG Pei-di,et al.Diversity analysis of biochemical components in Huangjincha (Camellia sinensis) germplasm resources[J].,2021,(04):1285.[doi:doi:10.3969/j.issn.1000-4440.2021.05.025]
[7]邰玉玲,杨林,王欢欢,等.茶特征成分合成相关新转录因子鉴定[J].江苏农业学报,2021,(06):1534.[doi:doi:10.3969/j.issn.1000-4440.2021.05.023]
 TAI Yu-ling,YANG Lin,WANG Huan-huan,et al.Identification of new transcription factors related to the synthesis of characteristic components in tea[J].,2021,(04):1534.[doi:doi:10.3969/j.issn.1000-4440.2021.05.023]
[8]黄双杰,曹梦珍,陈凌芝,等.氮素胁迫条件下茶树根系发育及生长素的响应[J].江苏农业学报,2023,(03):814.[doi:doi:10.3969/j.issn.1000-4440.2023.03.023]
 HUANG Shuang-jie,CAO Meng-zhen,CHEN Ling-zhi,et al.Auxin response and tea plant roots formation regulated by nitrogen stress[J].,2023,(04):814.[doi:doi:10.3969/j.issn.1000-4440.2023.03.023]
[9]刘财国,吕水源,于文涛,等.北苑贡茶茶树种质遗传多样性及其与青心乌龙茶树的亲缘关系[J].江苏农业学报,2024,(05):935.[doi:doi:10.3969/j.issn.1000-4440.2024.05.018]
 LIU Caiguo,LYU Shuiyuan,YU Wentao,et al.Genetic diversity of Beiyuan tribute tea germplasms and their genetic relationship with Qingxinwulong[J].,2024,(04):935.[doi:doi:10.3969/j.issn.1000-4440.2024.05.018]

备注/Memo

备注/Memo:
收稿日期:2023-04-21基金项目:国家茶叶产业技术体系项目(CARS-19);世界大叶茶技术创新中心建设及成果产业化项目(202102AE090038)作者简介:刘悦(1990-),女,黑龙江七台河人,硕士,助理研究员,研究方向为茶树遗传育种。(E-mail)liuyue0504@126.com通讯作者:陈林波,(E-mail)chenlinbo2002@sina.com
更新日期/Last Update: 2024-05-22