参考文献/References:
[1]YAMAGUCHI-SHINOZAKI K, SHINOZAKI K. Transcriptional regulatory networks in cellular responses and tolerance to dehydration and cold stresses[J]. Annual Review of Plant Biology,2006,57:781-803.
[2]MUNNS R, TESTER M. Mechanisms of salinity tolerance[J]. Annual Review of Plant Biology,2008,59:651-681.
[3]FU L B, SHEN Q F, KUANG L H, et al. Metabolite profiling and gene expression of Na/K transporter analyses reveal mechanisms of the difference in salt tolerance between barley and rice[J]. Plant Physiology and Biochemistry,2018,130:248-257.
[4]毕晨曦,杨宇昕,于月华,等. 小麦bZIP家族转录因子的鉴定及其在盐胁迫条件下的表达分析[J].分子植物育种,2021,19(15):4887-4895.
[5]ULLAH A, SUN H, YANG X, et al. A novel cotton WRKY gene, GhWRKY6-like, improves salt tolerance by activating the ABA signaling pathway and scavenging of reactive oxygen species[J]. Physiologia Plantarum,2018,162(4):439-454.
[6]DU B, LIU H, DONG K, et al. Over-expression of an R2R3 MYB gene, MdMYB108L, enhances tolerance to salt stress in transgenic plants[J]. International Journal of Molecular Sciences,2022,23(16):9428.
[7]李岢,周春江. 植物WRKY转录因子的研究进展[J].植物生理学报,2014,50(9):1329-1335.
[8]EULGEM T, RUSHTON P J, ROBATZEK S, et al. The WRKY superfamily of plant transcription factors[J]. Trends in Plant Science,2000,5(5):199-206.
[9]XIE T, CHEN C J, LI C H, et al. Genome-wide investigation of WRKY gene family in pineapple:evolution and expression profiles during development and stress[J]. BMC Genomics,2018,19:1-18.
[10]WU K L, GUO Z J, WANG H H, et al. The WRKY family of transcription factors in rice and Arabidopsis and their origins[J]. DNA Research,2005,12(1):9-26.
[11]SCHMUTZ J, CANNON S B, SCHLUETER J, et al. Genome sequence of the palaeopolyploid soybean[J]. Nature,2010,463(7278):178-183.
[12]苏文娟,曹瑞兰,周增亮,等. 油茶WRKY基因家族鉴定及逆境胁迫表达分析[J].中南林业科技大学学报,2023,43(3):155-166,174.
[13]郝青婷,高伟,闫虎斌,等. 绿豆WRKY基因家族的全基因组鉴定及生物信息学分析[J].西北农林科技大学学报(自然科学版),2023,51(5):59-71,81.
[14]ZHOU L, WANG N N, GONG S Y, et al. Overexpression of a cotton (Gossypium hirsutum) WRKY gene, GhWRKY34, in Arabidopsis enhances salt-tolerance of the transgenic plants[J]. Plant Physiology and Biochemistry,2015,96:311-320.
[15]BO C, CAI R H, FANG X, et al. Transcription factor ZmWRKY20 interacts with ZmWRKY115 to repress expression of ZmbZIP111 for salt tolerance in maize[J]. The Plant Journal,2022,111(6):1660-1675.
[16]BABITHA K C, RAMU S V, PRUTHVI V, et al. Co-expression of at bHLH17 and at WRKY28 confers resistance to abiotic stress in Arabidopsis[J]. Transgenic Research,2013,22:327-341.
[17]ZHANG Y Z, LI P, NIU Y Q, et al. Evolution of the WRKY66 gene family and its mutations generated by the CRISPR/Cas9 system increase the sensitivity to salt stress in Arabidopsis[J]. International Journal of Molecular Sciences,2023,24(4):3071.
[18]JIANG Y Q, DEYHOLOS M K. Functional characterization of Arabidopsis NaCl-inducible WRKY25 and WRKY33 transcription factors in abiotic stresses[J]. Plant Molecular Biology,2009,69:91-105.
[19]SHEN Y, CHI Y H, LU S, et al. Involvement of JMJ15 in the dynamic change of genome-wide H3K4me3 in response to salt stress[J]. Frontiers in Plant Science,2022,13:1009723.
[20]WU X, XU J N, MENG X N, et al. Linker histone variant HIS1-3 and WRKY1 oppositely regulate salt stress tolerance in Arabidopsis[J]. Plant Physiology,2022,189(3):1833-1847.
[21]LI P, LI X W, JIANG M. CRISPR/Cas9-mediated mutagenesis of WRKY3 and WRKY4 function decreases salt and Me-JA stress tolerance in Arabidopsis thaliana[J]. Molecular Biology Reports,2021,48(8):5821-5832.
[22]SCARPECI T E, ZANOR M I, MUELLER-ROEBER B, et al. Overexpression of AtWRKY30 enhances abiotic stress tolerance during early growth stages in Arabidopsis thaliana[J]. Plant Molecular Biology,2013,83:265-277.
[23]KRISHNAMURTHY P, VISHAL B, BHAL A, et al. WRKY9 transcription factor regulates cytochrome P450 genes CYP94B3 and CYP86B1, leading to increased root suberin and salt tolerance in Arabidopsis[J]. Physiologia Plantarum,2021,172(3):1673-1687.
[24]CHEN H, LAI Z B, SHI J W, et al. Roles of Arabidopsis WRKY18, WRKY40 and WRKY60 transcription factors in plant responses to abscisic acid and abiotic stress[J]. BMC Plant Biology,2010,10(1):1-15.
[25]HU Y, CHEN L, WANG H P, et al. Arabidopsis transcription factor WRKY8 functions antagonistically with its interacting partner VQ 9 to modulate salinity stress tolerance[J]. The Plant Journal,2013,74(5):730-745.
[26]ALI M A, AZEEM F, NAWAZ M A, et al. Transcription factors WRKY11 and WRKY17 are involved in abiotic stress responses in Arabidopsis[J]. Journal of Plant Physiology,2018,226:12-21.
[27]杨俊品,罗菊枝. 中国蚕、豌豆育种进展[J].西南农业学报1996,9(增刊1):142-146.
[28]田莹莹. 蚕豆籽粒大小的QTL分析[D].西宁:青海大学,2018.
[29]PUNTA M, COGGILL P C, EBERHARDT R Y, et al. The Pfam protein families database[J]. Nucleic Acids Research,2012,40(1):290-301.
[30]SUBRAMANIAN B, GAO S H, LERCHER M J, et al. Evolview v3:a webserver for visualization, annotation, and management of phylogenetic trees[J]. Nucleic Acids Research,2019,47(1):270-275.
[31]CHEN C J, CHEN H, ZHANG Y, et al. TBtools:an integrative toolkit developed for interactive analyses of big biological data[J]. Molecular Plant,2020,13(8):1194-1202.
[32]BAILEY T L, BODEN M, BUSKE F A, et al. MEME SUITE:tools for motif discovery and searching[J]. Nucleic Acids Research,2009,37(S2):202-208.
[33]JAYAKODI M, GOLICZ A A, KREPLAK J, et al. The giant diploid faba genome unlocks variation in a global protein crop[J]. Nature,2023,615(7953):652-659.
[34]WANG H P, CHEN W Q, XU Z Y, et al. Functions of WRKYs in plant growth and development[J]. Trends in Plant Science,2023,28(6):630-645.
[35]ZHOU H, ZHU W, WANG X C, et al. A missense mutation in WRKY32 converts its function from a positive regulator to a repressor of photomorphogenesis[J]. The New Phytologist,2021,235(1):111-125.
[36]HUNG F Y, SHIH Y H, LIN P Y, et al. WRKY63 transcriptional activation of COOLAIR and COLDAIR regulates vernalization-induced flowering[J]. Plant Physiology,2022,190(1):532-547.
[37]LI W X, PANG S Y, LU Z G, et al. Function and mechanism of WRKY transcription factors in abiotic stress responses of plants[J]. Plants,2020,9(11):1515.
[38]WANG L J, GUO D Z, ZHAO G D, et al. Group IIc WRKY transcription factors regulate cotton resistance to Fusarium oxysporum by promoting GhMKK2-mediated flavonoid biosynthesis[J]. New Phytologist,2022,236(1):249-265.
[39]YIN M, SONG N, CHEN S Y, et al. NaKTI2, a Kunitz trypsin inhibitor transcriptionally regulated by NaWRKY3 and NaWRKY6, is required for herbivore resistance in Nicotiana attenuata[J]. Plant Cell Reports,2021,40:97-109.
[40]刘晨,曹小汉,殷丹丹,等. MAPK信号通路调控植物响应非生物胁迫的研究进展[J].安徽农业科学,2022,50(18):9-16.
[41]ZHENG Z Y, MOSHER S L, FAN B, et al. Functional analysis of Arabidopsis WRKY25 transcription factor in plant defense against Pseudomonas syringae[J]. BMC Plant Biology,2007,7(1):1-13.
[42]ANDREASSON E, JENKINS T, BRODERSEN P, et al. The MAP kinase substrate MKS1 is a regulator of plant defense responses[J]. The EMBO Journal,2005,24(14):2579-2589.
相似文献/References:
[1]欧阳裕元,余东梅,杨梅.蚕豆主要农艺性状与单株产量的相关及通径分析[J].江苏农业学报,2016,(04):763.[doi:10.3969/j.issn.100-4440.2016.04.008]
OUYANG Yu-yuan,YU Dong-mei,YANG Mei.Path analysis and correlation analysis between agronomic traits and yield in broad bean[J].,2016,(01):763.[doi:10.3969/j.issn.100-4440.2016.04.008]
[2]刘飞,杨春艳,谢建新.傅里叶变换红外光谱结合判别分析法诊断蚕豆病虫害[J].江苏农业学报,2015,(03):531.[doi:10.3969/j.issn.1000-4440.2015.03.011]
LIU Fei,YANG Chun-yan,XIE Jian-xin.Diagnosis of diseases and pests of broad bean by Fourier transform infrared spectroscopy combining discriminant analysis[J].,2015,(01):531.[doi:10.3969/j.issn.1000-4440.2015.03.011]
[3]陈惠,唐明霞,宋居易,等.烫漂对蚕豆感官品质及过氧化物酶活性的影响[J].江苏农业学报,2015,(03):708.[doi:10.3969/j.issn.1000-4440.2015.03.038]
CHEN hui,TANG Ming-xia,SONG Ju-yi,et al.Effect of blanching on sensory properties and activity of peroxidase in broad beans[J].,2015,(01):708.[doi:10.3969/j.issn.1000-4440.2015.03.038]
[4]涂丽琴,吴淑华,干射香,等.江苏省蚕豆上菜豆黄花叶病毒的分子鉴定[J].江苏农业学报,2019,(04):804.[doi:doi:10.3969/j.issn.1000-4440.2019.04.008]
TU Li qin,WU Shu hua,GAN She xiang,et al.Molecular identification of bean yellow mosaic virus infecting Vicia faba from Jiangsu province[J].,2019,(01):804.[doi:doi:10.3969/j.issn.1000-4440.2019.04.008]
[5]高营,林云,袁星星,等.蚕豆VfGASA1基因的异源过表达延迟拟南芥开花[J].江苏农业学报,2021,(01):44.[doi:doi:10.3969/j.issn.1000-4440.2021.01.006]
GAO Ying,LIN Yun,YUAN Xing-xing,et al.Heterologous overexpression of Vicia faba VfGASA1 gene delays flowering in transgenic Arabidopsis[J].,2021,(01):44.[doi:doi:10.3969/j.issn.1000-4440.2021.01.006]
[6]周仙莉,滕长才,张红岩,等.蚕豆遗传图谱与QTL定位研究进展[J].江苏农业学报,2021,(01):237.[doi:doi:10.3969/j.issn.1000-4440.2021.01.031]
ZHOU Xian-li,TENG Chang-cai,ZHANG Hong-yan,et al.Research advance of genetic linkage map and QTL location in Vicia faba L.[J].,2021,(01):237.[doi:doi:10.3969/j.issn.1000-4440.2021.01.031]
[7]辛佳佳,张南峰,程华萍,等.江西省地方蚕豆种质资源遗传多样性分析及优异资源挖掘[J].江苏农业学报,2022,38(01):20.[doi:doi:10.3969/j.issn.1000-4440.2022.01.003]
XIN Jia-jia,ZHANG Nan-feng,CHENG Hua-ping,et al.Genetic diversity analysis and excellent resources mining of local broad bean germplasm resources in Jiangxi province[J].,2022,38(01):20.[doi:doi:10.3969/j.issn.1000-4440.2022.01.003]
[8]赵娜,缪亚梅,姚梦楠,等.蚕豆种质资源籽粒表型与营养品质性状的多样性分析[J].江苏农业学报,2022,38(03):597.[doi:doi:10.3969/j.issn.1000-4440.2022.03.003]
ZHAO Na,MIAO Ya-mei,YAO Meng-nan,et al.Diversity analysis on seed phenotypic and nutrient quality traits in faba bean germplasm resources[J].,2022,38(01):597.[doi:doi:10.3969/j.issn.1000-4440.2022.03.003]
[9]高晓晓,涂丽琴,孙枫,等.江苏蚕豆三叶草黄脉病毒的分子鉴定及全基因组结构特征分析[J].江苏农业学报,2022,38(05):1203.[doi:doi:10.3969/j.issn.1000-4440.2022.05.006]
GAO Xiao-xiao,TU Li-qin,SUN Feng,et al.Molecular identification and genomic characterization of clover yellow vein virus isolated from broad bean in Jiangsu province[J].,2022,38(01):1203.[doi:doi:10.3969/j.issn.1000-4440.2022.05.006]
[10]王凡,卞晓春,刘陈玮,等.南通市蚕豆赤斑病病原菌鉴定及其抑菌药剂筛选[J].江苏农业学报,2024,(10):1810.[doi:doi:10.3969/j.issn.1000-4440.2024.10.005]
WANG Fan,BIAN Xiaochun,LIU Chenwei,et al.Identification and screening of antifungal agents for the pathogen causing broad bean chocolate spot in Nantong City[J].,2024,(01):1810.[doi:doi:10.3969/j.issn.1000-4440.2024.10.005]