[1]陈铭中,钟旭美,林海生,等.UV-C处理对采后香蕉贮藏防御性成分和品质的影响[J].江苏农业学报,2022,38(02):528-538.[doi:doi:10.3969/j.issn.1000-4440.2022.02.029]
 CHEN Ming-zhong,ZHONG Xu-mei,LIN Hai-sheng,et al.Effects of UV-C treatment on defensive components and quality of postharvest banana during storage[J].,2022,38(02):528-538.[doi:doi:10.3969/j.issn.1000-4440.2022.02.029]
点击复制

UV-C处理对采后香蕉贮藏防御性成分和品质的影响()
分享到:

江苏农业学报[ISSN:1006-6977/CN:61-1281/TN]

卷:
38
期数:
2022年02期
页码:
528-538
栏目:
加工贮藏·质量安全
出版日期:
2022-04-30

文章信息/Info

Title:
Effects of UV-C treatment on defensive components and quality of postharvest banana during storage
作者:
陈铭中123钟旭美23林海生1秦小明1
(1.广东海洋大学食品科技学院,广东湛江524088;2.阳江职业技术学院食品与环境工程系,广东阳江529566;3.阳江市功能性食品研发与质量评价重点实验室,广东阳江529566)
Author(s):
CHEN Ming-zhong123ZHONG Xu-mei23LIN Hai-sheng1QIN Xiao-ming1
(1.College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China;2.Department of Food and Environmental Engineering, Yangjiang Polytechnic, Yangjiang 529566, China;3.Yangjiang Key Laboratory of Functional Food R & D and Quality Analysis, Yangjiang 529566, China)
关键词:
香蕉短波紫外线(UV-C)照射抗病相关酶抗氧化能力
Keywords:
bananashort wave ultravidet (UV-C) irradiationdisease resistant-related enzymesantioxidant capacity
分类号:
TS255.3;S668.1
DOI:
doi:10.3969/j.issn.1000-4440.2022.02.029
文献标志码:
A
摘要:
为了提高香蕉的贮藏品质,研究短波紫外线(UV-C)对香蕉贮藏过程中主要酶活性和抗氧化性的影响,用0.02 kJ/m2剂量的UV-C处理香蕉后,于25 ℃贮藏18 d,研究UV-C处理对香蕉果实腐烂率、失质量率、总叶绿素含量、总酚(TP)含量、总黄酮(TF)含量、纤维素酶(CL)活性、2,2′-联氮-双-3-乙基苯并噻唑啉-6-磺酸(ABTS)自由基清除率、1,1-二苯基-2-三硝基苯肼(DPPH)自由基清除率、铁离子抗氧化能力(FRAP值)、苯丙氨酸解氨酶(PAL)活性、超氧化物歧化酶(SOD)活性、过氧化物酶(POD)活性的影响。结果表明,UV-C处理显著降低了香蕉果实的腐烂率,减少了失质量,同时显著减缓了香蕉皮中叶绿素的降解,抑制了纤维素酶活性,激活了PAL、SOD和POD的活性,提高了多酚、总黄酮含量。通过对12个指标的相关性和聚类分析发现,经UV-C处理后,PAL的激活,对诱导增加防御性成分TF、TP、SOD和POD有显著影响,有利于维持香蕉果实在贮藏过程中的品质。由此可见,0.02 kJ/m2剂量UV-C处理可以提高香蕉果实抗病相关酶活性和抗氧化能力,延缓香蕉成熟,增强香蕉的抗病性,提升香蕉在贮藏期间的品质。
Abstract:
In order to improve the storage quality of banana, the effects of short wave ultraviolet (UV-C) on the main enzyme activity and antioxidant activity of banana during storage were studied. Bananas were stored at 25 ℃ for 18 days after being treated with 0.02 kJ/m2 UV-C. The effects of UV-C treatment on decay rate, weight loss rate, total chlorophyll content, total phenol (TP) content, total flavonoids (TF) content, cellulase (CL) activity, 2,2′-azino-bis-3-ethylbenzothiazoline-6-sulfonic acid (ABTS) radical scavenging rate, 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging rate,ferric reducing antioxidant power (FRAP) value, phenylalanine ammonia lyase (PAL) activity, superoxide dismutase (SOD) activity, peroxidase (POD) activity in banana fruits were investigated. The results showed that UV-C treatment significantly reduced the decay rate and the weight loss rate, slowed down the degradation of chlorophyll significantly, inhibited the cellulase activity, promoted the activities of PAL, SOD, POD, and improved the contents of total polyphenols and flavonoids. The correlation and cluster analysis of 12 indices showed that the activation of PAL after UV-C treatment had a significant effect on the induction of the increase of defensive components TF, TP, SOD and POD, which was beneficial to the quality maintenance of banana fruit during storage. In conclusion, 0.02 kJ/m2 UV-C treatment can improve the activity of disease resistant-related enzymes and antioxidant capacity of banana fruit, delay the ripening, enhance the disease resistance, improve the quality of banana during storage.

参考文献/References:

[1]DALE J, PAUL J Y, DUGDALE B, et al. Modifying bananas: from transgenics to organics?[J]. Sustainability, 2017, 9(3):333.
[2]洪佳敏,何炎森,郑云云,等. 香蕉成分及其保健功能研究进展[J]. 中国农学通报, 2016,32(10):176-181.
[3]SINGH B, SINGH J P, KAUR A, et al. Bioactive compounds in banana and their associated health benefits-a review[J]. Food Chemistry, 2016,206:1-11.
[4]PEREIRA A, MARASCHIN M. Banana (Musa spp) from peel to pulp: ethnopharmacology, source of bioactive compounds and its relevance for human health[J]. Journal of Ethnopharmacology, 2015,160:149-163.
[5]HUANG H, JIAN Q J, JIANG Y M, et al. Enhanced chilling tolerance of banana fruit treated with malic acid prior to low-temperature storage[J]. Postharvest Biology and Technology, 2016,111:209-213.
[6]WANG Y S, LUO Z S, MAO L C, et al. Contribution of polyamines metabolism and GABA shunt to chilling tolerance induced by nitric oxide in cold-stored banana fruit[J]. Food Chemistry, 2016,197:333-339.
[7]HAO J S, LI X, XU G Z, et al. Exogenous progesterone treatment alleviates chilling injury in postharvest banana fruit associated with induction of alternative oxidase and antioxidant defense[J]. Food Chemistry, 2019,286: 329-337.
[8]ZHU X Y, LIN S, FU D, et al. Effects of the combination treatment of 1-MCP and ethylene on the ripening of harvested banana fruit[J]. Postharvest Biology and Technology, 2015,107:23-32.
[9]SUSENO N, SAVITRI E, SAPEI L, et al. Improving shelf-life of Cavendish banana using chitosan edible coating[J]. Procedia Chemistry, 2014,9:113-120.
[10]XU Y Q, CHARLES M T, LUO Z S, et al. Preharvest UV-C treatment affected postharvest senescence and phytochemicals alternation of strawberry fruit with the possible involvement of abscisic acid regulation[J]. Food Chemistry, 2019,299:125138.
[11]ESUA O J, CHIN N L, YUSOF Y A, et al. Effects of simultaneous UV-C radiation and ultrasonic energy postharvest treatment on bioactive compounds and antioxidant activity of tomatoes during storage[J]. Food Chemistry, 2019,270:113-122.
[12]JIN P, WANG H Y, ZHANG Y, et al. UV-C enhances resistance against gray mold decay caused by Botrytis cinerea in strawberry fruit[J]. Scientia Horticulturae, 2017, 225:106-111.
[13]ZHOU D D, SUN Y, LI M Y, et al. Postharvest hot air and UV-C treatments enhance aroma-related volatiles by simulating the lipoxygenase pathway in peaches during cold storage[J]. Food Chemistry, 2019, 292:294-303.
[14]PINTO E P, PERIN E C, SCHOTT I B, et al. The effect of postharvest application of UV-C radiation on the phenolic compounds of conventional and organic grapes (Vitis labrusca cv. ‘Concord’)[J]. Postharvest Biology and Technology, 2016,120:84-91.
[15]ZHANG W L, JIANG W B. UV treatment improved the quality of postharvest fruits and vegetables by inducing resistance[J]. Trends in Food Science & Technology, 2019, 92(3):71-80.
[16]DING P, LING Y S. Browning assessment methods and polyphenol oxidase in UV-C irradiated Berangan banana fruit[J]. International Food Research Journal, 2014,21(4):1667-1674.
[17]PONGPRASERT N, SEKOZAWA Y, SUGAYA S, et al. A novel postharvest UV-C treatment to reduce chilling injury (membrane damage, browning and chlorophyll degradation) in banana peel[J]. Scientia Horticulturae, 2011,130(1):73-77.
[18]王甲水,贾彩红,张建斌,等. 香蕉果实乙烯释放量GC的测定方法及其不同处理下的变化趋势[J]. 热带作物学报, 2013,34(6):1188-1191.
[19] 曹建康,姜微波,赵玉梅. 果蔬采后生理生化实验指导[M]. 北京:中国轻工业出版社, 2007.
[20]SILVA K D R R, SIRASA M S F. Antioxidant properties of selected fruit cultivars grown in Sri Lanka[J]. Food Chemistry, 2018,238:203-208.
[21]KHALIQ G, MUDA MOHAMED M T, GHAZALI H M, et al. Influence of gum arabic coating enriched with calcium chloride on physiological, biochemical and quality responses of mango (Mangifera indica L.) fruit stored under low temperature stress[J]. Postharvest Biology and Technology, 2016,111:362-369.
[22]孙丹,黄士淇,蔡圣宝. 不同加工方式对苦荞中总酚、总黄酮及抗氧化性的影响[J]. 食品与发酵工业, 2016,42(1):141-147.
[23]THAIPONG K, BOONPRAKOB U, CROSBY K, et al. Comparison of ABTS, DPPH, FRAP, and ORAC assays for estimating antioxidant activity from guava fruit extracts[J]. Journal of Food Composition and Analysis, 2006,19(6/7):669-675.
[24]WU L C, HSU H W, CHEN Y C, et al. Antioxidant and antiproliferative activities of red pitaya[J]. Food Chemistry, 2006,95(2):319-327.
[25]王馨悦,姜爱丽,胡文忠,等. 乳酸钙处理对采后蓝莓品质的影响[J]. 现代食品科技, 2019,35(7):47-54.
[26]连政,黄圆博,贾佳林,等. 不同采收期对软枣猕猴桃采后品质和细胞壁降解的影响[J]. 中国果树, 2019(4):69-71.
[27]SHARAF A, SHARAF O A, HEGAZI S M, et al. Chemical and biological studies on banana fruit[J]. Zeitschrift für Ernhrungswissenschaft, 1979,18(1):8-15.
[28]VU H T, SCARLETT C J, VUONG Q V. Phenolic compounds within banana peel and their potential uses: a review[J]. Journal of Functional Foods, 2018,40:238-248.
[29]LIU C H, ZHENG H H, SHENG K L, et al. Effects of postharvest UV-C irradiation on phenolic acids, flavonoids, and key phenylpropanoid pathway genes in tomato fruit[J]. Scientia Horticulturae, 2018,241:107-114.
[30]LI M L, LI X A, HAN C, et al. UV-C treatment maintains quality and enhances antioxidant capacity of fresh-cut strawberries[J]. Postharvest Biology and Technology, 2019,156:110945.
[31]KONDAPALLI N, SADINENI V, VARIYAR P S, et al. Impact of γ-irradiation on antioxidant capacity of mango (Mangifera indica L.) wine from eight Indian cultivars and the protection of mango wine against DNA damage caused by irradiation[J]. Process Biochemistry, 2014,49(11):1819-1830.
[32]焦中高,刘杰超,刘慧,等. 短波紫外线辐照处理对采后甜樱桃果实营养品质和抗氧化活性的影响[J]. 中国食品学报, 2017,17(1):170-178.
[33]WANG Y, CHEN J Y, JIANG Y M, et al. Cloning and expression analysis of phenylalanine ammonia-lyase in relation to chilling tolerance in harvested banana fruit[J]. Postharvest Biology and Technology, 2007,44(1):34-41.
[34]HUYSKENS-KEIL S, EICHHOLZ-DNDAR I, HASSENBERG K, et al. Impact of light quality (white, red, blue light and UV-C irradiation) on changes in anthocyanin content and dynamics of PAL and POD activities in apical and basal spear sections of white asparagus after harvest[J]. Postharvest Biology and Technology, 2020,161:111069.
[35]ZHOU H W, YUAN B, CHEN W, et al. Effect of monooxygenase purified from Mycobacterium JS60 combined with sodium alginate on the preservation of banana[J]. Postharvest Biology and Technology, 2020,161:111079.
[36]LO’AY A A, EL-KHATEEB A Y. Antioxidant enzyme activities and exogenous ascorbic acid treatment of ‘Williams’ banana during long-term cold storage stress[J]. Scientia Horticulturae, 2018,234:210-219.
[37]罗钦,李冬梅,黄敏敏,等. 不同生长阶段墨瑞鳕脂肪酸组成及主成分分析[J]. 核农学报, 2020,34(4):788-795.
[38]GONZLEZ-AGUILAR G A, ZAVALETA-GATICA R, TIZNADO-HERNNDEZ M E. Improving postharvest quality of mango ‘Haden’ by UV-C treatment[J]. Postharvest Biology and Technology, 2007,45(1):108-116.

相似文献/References:

[1]李映晖,吕庆芳,李映志,等.不同肥料对香蕉和粉蕉果实挥发物的影响[J].江苏农业学报,2015,(01):73.[doi:10.3969/j.issn.1000-4440.2015.01.011]
 LI Ying-hui,L Qing-fang,LI Ying-zhi,et al.Influence of different fertilizers on volatile compounds of banana and dwarf banana[J].,2015,(02):73.[doi:10.3969/j.issn.1000-4440.2015.01.011]
[2]赖朝圆,杨越,陶成圆,等.不同作物-香蕉轮作对香蕉生产及土壤肥力质量的影响[J].江苏农业学报,2018,(02):299.[doi:doi:10.3969/j.issn.1000-4440.2018.02.011]
 LAI Chao-yuan,YANG Yue,TAO Cheng-yuan,et al.Effects of replanted banana after rotation of different crops on banana production and soil fertility quality[J].,2018,(02):299.[doi:doi:10.3969/j.issn.1000-4440.2018.02.011]
[3]赵松松,韩馨仪,刘斌,等.交变磁场抑制香蕉冷害的作用机理分析[J].江苏农业学报,2021,(03):739.[doi:doi:10.3969/j.issn.1000-4440.2021.03.025]
 ZHAO Song-song,HAN Xin-yi,LIU Bin,et al.Mechanism analysis on the action of alternating magnetic field in inhibiting chilling injury of bananas[J].,2021,(02):739.[doi:doi:10.3969/j.issn.1000-4440.2021.03.025]

备注/Memo

备注/Memo:
收稿日期:2021-06-19基金项目:亚热带果蔬加工与利用技术研究项目(2013050214);广东省普通高校特色创新类项目(2019GKTSCX122);广东省科技专项基金项目(SDZX2020028)作者简介:陈铭中(1979-),男,广东阳江人,博士,副教授,研究方向为食品加工与贮藏。(E-mail)gdyjchendan@163.com通讯作者:秦小明,(E-mail)qinxm@gdou.edu.cn
更新日期/Last Update: 2022-05-07