[1]黄静,刘霄悦,张建成,等.不同碳素纳米材料对黄曲霉毒素B1的吸附[J].江苏农业学报,2022,38(02):539-548.[doi:doi:10.3969/j.issn.1000-4440.2022.02.030]
 HUANG Jing,LIU Xiao-yue,ZHANG Jian-cheng,et al.Adsorption of aflatoxin B1 by carbon nanomaterials[J].,2022,38(02):539-548.[doi:doi:10.3969/j.issn.1000-4440.2022.02.030]
点击复制

不同碳素纳米材料对黄曲霉毒素B1的吸附()
分享到:

江苏农业学报[ISSN:1006-6977/CN:61-1281/TN]

卷:
38
期数:
2022年02期
页码:
539-548
栏目:
加工贮藏·质量安全
出版日期:
2022-04-30

文章信息/Info

Title:
Adsorption of aflatoxin B1 by carbon nanomaterials
作者:
黄静1刘霄悦1张建成2张初署2唐月异2王冕2朱立飞2
(1.辽宁工程技术大学,辽宁阜新125105;2.山东省花生研究所,山东青岛266100)
Author(s):
HUANG Jing1LIU Xiao-yue1ZHANG Jian-cheng2ZHANG Chu-shu2TANG Yue-yi2WANG Mian2ZHU Li-fei2
(1.Liaoning Technical University, Fuxin 125105, China;2.Shandong Peanut Research Institute, Qingdao 266100, China)
关键词:
碳素纳米材料黄曲霉毒素吸附过程吸附机理
Keywords:
carbon nanomaterialsaflatoxinadsorption processadsorption mechanism
分类号:
TQ424
DOI:
doi:10.3969/j.issn.1000-4440.2022.02.030
文献标志码:
A
摘要:
黄曲霉毒素B1(AFB1)对人体有较强的毒性,因此脱除食品中的AFB1具有重要意义。为了探究碳素纳米材料对AFB1的吸附机理,研究石墨、石墨烯、氧化石墨烯对AFB1的吸附,建立等温吸附曲线,进行吸附动力学、热力学分析,结合结构表征,探究其吸附过程,并用这3种碳素纳米材料脱除食品(食用醋、花生奶、花生油)中的AFB1。结果表明,3种碳素纳米材料对AFB1的吸附过程均符合Freundlich模型(R2为0.944 1~0.988 5)、准二级动力学模型(R2为0.973 5~0.997 2),吸附以多分子层化学吸附为主。吸附过程均为自发放热过程,温度会影响碳素纳米材料的吸附能力,在25~45 ℃条件下,温度升高不利于吸附进行。3种碳素纳米材料对AFB1均具有较强的吸附能力,综合考虑,石墨烯的吸附能力最强,可有效脱除食品(食用醋、花生奶、花生油)中的AFB1。本研究系统探究碳素纳米材料对AFB1的吸附过程和吸附机理,可为碳素纳米材料用于脱除食品中的AFB1提供理论、技术支持。
Abstract:
Aflatoxin B1 (AFB1) has serious toxic effects on human health, so it is of great significance to remove AFB1 from food. In order to explore the adsorption mechanism of carbon nanomaterials on AFB1, absorption of graphite, graphene and graphene oxide on AFB1 was studied, the isothermal adsorption curve was established, and the adsorption kinetics and thermodynamics were analyzed. Moreover, combined with the structure characterization, the adsorption process was explored, and the three kinds of carbon nanomaterials were used to remove AFB1 in food (edible vinegar, peanut milk, peanut oil). The results showed that the adsorption process of three carbon nanomaterials on AFB1 conformed to Freundlich model (R2=0.944 1-0.988 5) and quasi-second-order kinetic model (R2=0.973 5-0.997 2), and the adsorption was dominated by multi-molecule chemisorption. The adsorption process was spontaneous exothermic process, the temperature would affect the adsorption capacity of adsorption materials. At 25-45 ℃, the increase of temperature was not conducive to adsorption. The three carbon nanomaterials had strong adsorption capacity for AFB1. In general, graphene had the strongest adsorption capacity, which could effectively remove AFB1 from food (edible vinegar, peanut milk, peanut oil). This study systematically explored the adsorption process and mechanism of carbon nanomaterials for AFB1, which could provide theoretical and technical support for the application of carbon nanomaterials in the removal of AFB1 in food.

参考文献/References:

[1]BEDIAKO K A, OFORI K, OFFEI S K, et al. Aflatoxin contamination of groundnut ( Arachis hypogaea L.): predisposing factors and management interventions[J]. Food Control,2019,98:61-67.
[2]JI C, FAN Y, ZHAO L H. Review on biological degradation of mycotoxins[J]. Animal Nutrition,2016,2:127-133.
[3]PIROUZ A A, KARJIBAN R A, BAKAR F A, et al. A novel adsorbent magnetic graphene oxide modified with chitosan for the simultaneous reduction of mycotoxins[J]. Toxins,2018,10: 361.
[4]LUO Y, LIU X J, YUAN L, et al. Complicated interactions between bio-adsorbents and mycotoxins during mycotoxin adsorption: Current research and future prospects[J]. Trends in Food Science & Technology,2020,96:127-134.
[5]SUN Z W, HUANG D, DUAN X H, et al. Functionalized nanoflower-like hydroxyl magnesium silicate for effective adsorption of aflatoxin B1[J]. Journal of Hazardous Materials,2020,387:121792.
[6]RASHEED U, AIN Q U, YASEEN M, et al. Modification of bentonite with orange peels extract and its application as mycotoxins′ binder in buffered solutions and simulated gastrointestinal fluids[J]. Journal of Cleaner Production, 2020, 267:122105.
[7]ZHANG W, ZHANG L Y, JIANG X, et al. Enhanced adsorption removal of aflatoxin B1, zearalenone and deoxynivalenol from dairy cow rumen fluid by modified nano-montmorillonite and evaluation of its mechanism[J]. Animal Feed Science and Technology,2020,259:114366.
[8]叶盛群,谌刚,韩秀山. 食用油吸附脱色剂对植物油中黄曲霉毒素含量的影响[J]. 精细与专用化学品,2013,21(7):20-22.
[9]SUN X M, LIU Z, WELSHER K, et al. Nano-graphene oxide for cellular imaging and drug delivery[J]. Nano Research, 2008, 1:203-212.
[10]HUMMERS W S, OFFEMAN R E. Preparation of graphitic oxide[J]. Journal of the American Chemical Society, 1958, 80(6): 1339.
[11]ZHANG P P, LI J, LYU L X, et al. Vertically aligned graphene sheets membrane for highly efficient solar thermal generation of clean water[J]. ACS Nano,2017,11(5):5087-5093.
[12]郑慧玲. 功能化氧化石墨烯复合材料的制备及其对污染物吸附研究[D]. 合肥:中国科学技术大学,2020.
[13]LYU M Q, YAN L W, LIU C, et al. Non-covalent functionalized graphene oxide (GO) adsorbent with an organic gelator for co-adsorption of dye, endocrine-disruptor, pharmaceutical and medallion[J]. Chemical Engineering Journal, 2018, 349:791-799.
[14]HORKY P, VENUSOVA E, AULICHOVA T, et al. Usability of graphene oxide as a mycotoxin binder: in vitro study[J]. PLoS One, 2020, 15(9):e0239479.
[15]BAI X J, SUN C, XU J, et al. Detoxification of zearalenone from corn oil by adsorption of functionalized GO systems[J]. Applied Surface Science, 2018, 430:198-207.
[16]JI J M, XIE W L. Detoxification of aflatoxin B1 by magnetic graphene composite adsorbents from contaminated oils[J]. Journal of Hazardous Materials, 2020,381:120915.
[17]KANG S C, ZHAO Y L, WANG W, et al. Removal of methylene blue from water with montmorillonite nanosheets/chitosan hydrogels as adsorbent[J]. Applied Surface Science,2018,448:203-211.
[18]近藤精一,石川达雄, 安部郁夫. 吸附科学[M].北京:化学工业出版社,2006:55-57.
[19]陈国华.应用物理化学[M].北京:化学工业出版社,2008:37-40.
[20]ADUNPHATCHARAPHON S , PETCHKONGKAEW A , GRECO D , et al. The effectiveness of durian peel as a multi-mycotoxin adsorbent[J]. Toxins, 2020, 12(2):108.
[21]FERNANDES J M, CALADO T, GUIMARAES A, et al. In vitro adsorption of aflatoxin B1, ochratoxin A, and zearalenone by micronized grape stems and olive pomace in buffer solutions[J]. Mycotoxin Research,2019,35:243-252.
[22]WANG G, MIAO Y, SUN Z, et al. Simultaneous adsorption of aflatoxin B1 and zearalenone by mono- and di-alkyl cationic surfactants modified montmorillonites[J]. Journal of Colloid and Interface Science,2018,511:67-76.
[23]LI Y A, WANG R, CHEN Z X, et al. Preparation of magnetic mesoporous silica from rice husk for aflatoxin B1 removal: optimum process and adsorption mechanism[J]. PLoS One,2020,15(9): e0238837.
[24]JI J, XIE W L. Removal of aflatoxin B1 from contaminated peanut oils using magnetic attapulgite[J]. Food Chemistry, 2021, 339:128072.
[25]SUN Z M, LIAN C, LI C Q, et al. Investigations on organo-montmorillonites modified by binary nonionic/zwitterionic surfactant mixtures for simultaneous adsorption of aflatoxin B1 and zearalenone [J]. Journal of Colloid and Interface Science, 2020, 565:11-22.

备注/Memo

备注/Memo:
收稿日期:2021-08-25基金项目:辽宁省教育厅青年项目(理)(LJ2017QL030);青岛市民生计划基金项目(19-6-1-61-nsh);山东省农业科学院农业科技创新工程基金项目(CXGC2021C07);山东省自然科学基金项目(ZR2020MC103)作者简介:黄静(1978-),女,辽宁沈阳人,博士,副教授,主要从事生物化学及复合材料研究。(E-mail)15918893@qq.com
更新日期/Last Update: 2022-05-07