参考文献/References:
[1]BARTELS D, SUNKAR R. Drought and salt tolerance in plants[J]. Critical Reviews in Plant Sciences, 2005, 24(1): 23-58.
[2]NISHIZAWA Y A, YABUTA Y, SHIGEOKA S. Galactinol and raffinose constitute a novel function to protect plants from oxidative damage[J]. Plant Physiology, 2008, 147(3): 1251-1263.
[3]KNAUPP M, MISHRA K B, NEDBAL L, et al. Evidence for a role of raffinose in stabilizing photosystem II during freeze-thaw cycles[J]. Planta, 2011, 234(3): 477-486.
[4]ELSAYED A I, RAFUDEEN M S, GOLLDACK D. Physiological aspects of raffinose family oligosaccharides in plants: protection against abiotic stress[J]. Plant Biology, 2014, 16(1): 1-8.
[5]TAJI T, OHSUMI C, IUCHI S, et al. Important roles of drought-and cold-inducible genes for galactinol synthase in stress tolerance in Arabidopsis thaliana[J]. Plant Journal, 2002, 29(4): 417-426.
[6]NISHIZAWA Y A, YABUTA Y, SHIGEOKA S. The contribution of carbohydrates including raffinose family oligosaccharides and sugar alcohols to protection of plant cells from oxidative damage[J]. Plant Signal Behavior, 2008, 3(11): 1016-1018.
[7]PANIKULANGARA T J. Galactinol synthase1. A novel heat shock factor target gene responsible for heat-induced synthesis of raffinose family oligosaccharides in Arabidopsis[J]. Plant Physiology, 2004, 136(2): 3148-3158.
[8]PILLET J, EGERT A, PIERI P, et al. VvGOLS1 and VvHsfA2 are involved in the heat stress responses in grapevine berries[J]. Plant & Cell Physiology, 2012, 53(10): 1776-1792.
[9]PRAFULL S, NITIN U K, MANOJ M. Stress-inducible galactinol synthase of chickpea (CaGolS) is implicated in heat and oxidative stress tolerance through reducing stress-induced excessive reactive oxygen species accumulation[J]. Plant Cell Physiol, 2018, 59(1): 155-166.
[10]ZHAI Y, SHAO S L, SHA W, et al. Overexpression of soybean GmERF9 enhances the tolerance to drought and cold in the transgenic tobacco[J]. Plant Cell Tissue and Organ Culture, 2017, 128(3): 607-618.
[11]HOEKEMA A, HIRSCH P R, HOOYKAASP J J, et al. A binary plant vector strategy based on separation of vir- and T-region of the Agrobacterium tumefaciens Ti-plasmid[J]. Nature, 1983, 303(5913): 179-180.
[12]SHAO H B, LIANG Z S, SHAO M A. Osmotic regulation of 10 wheat (Triticum aestivum L.) genotypes at soil water deficits[J]. Colloids and Surfaces B: Biointerfaces, 2006, 47(2), 132-139.
[13]PETERBAUER T, RICHTER A. Biochemistry and physiology of raffinose family oligosaccharides and galactosyl cyclitols in seeds[J]. Seed Science Research, 2001, 11(3), 185-197.
[14]SHEEN J, ZHOU L, JIANG J C. Sugar as signaling molecules[J]. Current Opinion in Plant Biology, 1999, 2(5): 410-418.
[15]KAPLAN F, KOPKA J, SUNG D Y, et al. Transcript and metabolite profiling during cold acclimation of Arabidopsis reveals an intricate relationship of cold-regulated gene expression with modifications in metabolite content[J]. The Plant Journal, 2007, 50(6): 967-981.
[16]WANG D H, YAO W, SONG Y, et al. Molecular characterization and expression of three galactinol synthase genes that confer stress tolerance in Salvia miltiorrhiza[J]. Journal of Plant Physiology, 2012, 169(18): 1838-1848.
[17]夏瑞祥,肖宁,洪义欢,等. 东乡野生稻苗期耐冷性的QTL定位[J]. 中国农业科学, 2010, 43(3): 443-451.
[18]王代鑫,徐升,程哲,等. 吉林省中晚熟水稻品种耐冷性鉴定结果与分析[J]. 中国稻米, 2020, 26(3): 48-53.
[19]CAKMAK I, HORSTW J. Effect of aluminium on lipid peroxidation, superoxide dismutase, catalase, and peroxidase activities in root tips of soybean (Glycinemax)[J]. Physiologia Plantarum, 1991, 83(3): 463-468.
[20]周旋,申璐,金媛,等. 外源水杨酸对盐胁迫下茶树生长及主要生理特性的影响[J]. 西北农林科技大学学报(自然科学版), 2015, 43(7): 161-167.
[21]高向阳,杨根平,许志强,等. 水分胁迫下钙对大豆膜脂过氧化保护酶系统的影响[J]. 华南农业大学学报, 1999,20(2): 7-12.
[22]WANG Y, LIU H, WANG S, et al. Overexpression of a common wheat gene GALACTINOL SYNTHASE3 enhances tolerance to zinc in Arabidopsis and rice through the modulation of reactive oxygen species production[J]. Plant Molecular Biology Reporter, 2016, 34: 794-806.
相似文献/References:
[1]刘朝茂,李成云.玉米与大豆间作对玉米叶片衰老的影响[J].江苏农业学报,2017,(02):322.[doi:doi:10.3969/j.issn.1000-4440.2017.02.013]
LIU Chao-mao,LI Cheng-yun.Effects of maize/soybean intercropping on maize leaf senescence[J].,2017,(01):322.[doi:doi:10.3969/j.issn.1000-4440.2017.02.013]
[2]张令瑄,谢婷婷,王瑾,等.大田条件下UV-B 辐射增强对大豆根际土壤相关指标的影响[J].江苏农业学报,2016,(01):118.[doi:10.3969/j.issn.1000-4440.2016.01.018]
ZHANG Ling-xuan,XIE Ting-ting,WANG Jin,et al.Soybean rhizosphere soil parameters in response to enhanced UV-B radiation under field condition[J].,2016,(01):118.[doi:10.3969/j.issn.1000-4440.2016.01.018]
[3]宁丽华,何晓兰,张大勇.大豆耐盐相关基因GmNcl1功能标记的开发及验证[J].江苏农业学报,2017,(06):1227.[doi:doi:10.3969/j.issn.1000-4440.2017.06.005]
NING Li-hua,HE Xiao-lan,ZHANG Da-yong.Development and validation of the function marker of soybean salt tolerance gene GmNcl1[J].,2017,(01):1227.[doi:doi:10.3969/j.issn.1000-4440.2017.06.005]
[4]杨艳丽,杨勇,李大红,等.转桃PpCuZnSOD基因大豆的耐旱性[J].江苏农业学报,2018,(05):978.[doi:doi:10.3969/j.issn.1000-4440.2018.05.003]
YANG Yan-li,YANG Yong,LI Da-hong,et al.Drought tolerance of transgenic soybean with PpCuZnSOD gene[J].,2018,(01):978.[doi:doi:10.3969/j.issn.1000-4440.2018.05.003]
[5]孙彦坤,陈睿,李静,等.不同降雨年型下反枝苋和大豆光合特征的比较[J].江苏农业学报,2019,(03):554.[doi:doi:10.3969/j.issn.1000-4440.2019.03.008]
SUN Yan-kun,CHEN Rui,LI Jing,et al.Comparison of photosynthetic characteristics between Amaranthus retroexus and Glycine max under different annual rainfall pattern[J].,2019,(01):554.[doi:doi:10.3969/j.issn.1000-4440.2019.03.008]
[6]曹媛媛,陈春,郭婷婷,等.亲和性促生菌DW12-L的定殖及其对大豆生长的影响[J].江苏农业学报,2019,(04):776.[doi:doi:10.3969/j.issn.1000-4440.2019.04.004]
CAO Yuan yuan,CHEN Chun,GUO Ting ting,et al.Colonization of soybean affinity rhizobacteria strain DW12-L and its effects on soybean growth[J].,2019,(01):776.[doi:doi:10.3969/j.issn.1000-4440.2019.04.004]
[7]丁俊男,于少鹏,李鑫,等.生物炭对大豆生理指标和农艺性状的影响[J].江苏农业学报,2019,(04):784.[doi:doi:10.3969/j.issn.1000-4440.2019.04.005]
DING Jun nan,YU Shao peng,LI Xin,et al.Effects of biochar application on soybean physiological indices and agronomic traits[J].,2019,(01):784.[doi:doi:10.3969/j.issn.1000-4440.2019.04.005]
[8]曹帅,杜仲阳,刘鹏,等.碱胁迫对大豆光合特性及内源激素含量的影响[J].江苏农业学报,2020,(02):284.[doi:doi:10.3969/j.issn.1000-4440.2020.02.005]
CAO Shuai,DU Zhong-yang,LIU Peng,et al.Effects of alkaline stress on photosynthetic characteristics and endogenous hormone contents of soybean[J].,2020,(01):284.[doi:doi:10.3969/j.issn.1000-4440.2020.02.005]
[9]张斌,陈丽娟,李其华,等.栽培大豆GRAS转录因子家族基因鉴定及其盐胁迫下表达模式分析[J].江苏农业学报,2021,(02):296.[doi:doi:10.3969/j.issn.1000-4440.2021.02.004]
ZHANG Bin,CHEN Li-juan,LI Qi-hua,et al.Identification of gene of GRAS transcription factor family in cultivated soybean(Glycine max L.) and expression pattern analysis under salt stress[J].,2021,(01):296.[doi:doi:10.3969/j.issn.1000-4440.2021.02.004]
[10]张威,许文静,许亚男,等.基于CRISPR/Cas9基因编辑的高油酸大豆品系创制[J].江苏农业学报,2023,(02):321.[doi:doi:10.3969/j.issn.1000-4440.2023.02.003]
ZHANG Wei,XU Wen-jing,XU Ya-nan,et al.Creation of high oleic acid soybean lines by CRISPR/Cas9[J].,2023,(01):321.[doi:doi:10.3969/j.issn.1000-4440.2023.02.003]