[1]王君婵,吴旭江,胡文静,等.扬麦系列品种(系)重要性状功能基因的KASP检测[J].江苏农业学报,2019,(06):1271-1283.[doi:doi:10.3969/j.issn.1000-4440.2019.06.002]
 WANG Jun-chan,WU Xu-jiang,HU Wen-jing,et al.Kompetitive allele specific PCR(KASP) assays for functional genes of important trait in Yangmai series wheat cultivars(lines)[J].,2019,(06):1271-1283.[doi:doi:10.3969/j.issn.1000-4440.2019.06.002]
点击复制

扬麦系列品种(系)重要性状功能基因的KASP检测()
分享到:

江苏农业学报[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2019年06期
页码:
1271-1283
栏目:
遗传育种·生理生化
出版日期:
2019-12-31

文章信息/Info

Title:
Kompetitive allele specific PCR(KASP) assays for functional genes of important trait in Yangmai series wheat cultivars(lines)
作者:
王君婵吴旭江胡文静张晓张勇高德荣别同德张伯桥
(江苏里下河地区农业科学研究所/农业部长江中下游小麦生物学与遗传育种重点实验室,江苏扬州225007)
Author(s):
WANG Jun-chanWU Xu-jiangHU Wen-jingZHANG XiaoZHANG YongGAO De-rongBIE Tong-deZHANG Bo-qiao
(Institute of Agricultural Sciences of the Lixiahe District in Jiangsu Province/Key Laboratory of Wheat Biology and Genetic Breeding in the Middle and Lower Yangtze River, Ministry of Agriculture, Yangzhou 225007, China)
关键词:
小麦基因KASP检测
Keywords:
wheat (Triticum aestivum L.)genekompetitive allele specific PCR(KASP) assays
分类号:
S512.1
DOI:
doi:10.3969/j.issn.1000-4440.2019.06.002
文献标志码:
A
摘要:
为了解扬麦系列品种(系)重要性状功能基因组成,利用高通量KASP标记技术对30份扬麦系列品种(系)的株高、光周期、抗病虫、抗穗发芽、抗旱、籽粒及品质性状等相关功能基因进行检测。结果表明:76.7%的供试品种(系)含有矮秆基因Rht-B1b;所有品种(系)携带光周期不敏感基因Ppd-A1a和Ppd-D1a,均聚合多个高千粒质量基因TaSus1-7A、TaSus2-2A、TaGS-D1和TaGW2-6B等;扬麦系列品种(系)主要含有TaPHS1、Vp-B1和TaSdr-B1 3个抗穗发芽基因,频率分别为73.3%、90.0%和73.3%;抗旱基因CWI-4A、CWI-5D、TaMoc-A1、TaSST-A2、TaSST-D1、Dreb-B1和1-feh-w3的频率分别为66.7%、100.0%、13.3%、100.0%、93.3%、20.0%和90.0%;抗赤霉病基因Fhb1在扬麦系列品种(系)中的比例不高,仅为16.7%;70%扬麦系列品种(系)含有抗叶锈病基因Lr14a;抗禾谷孢囊线虫病基因Cre8、抗眼斑病基因Pch1、抗秆锈病基因(Sr2和Sr36)、抗叶锈病基因(Lr21、Lr34、Lr47和Lr67)、抗褐斑病基因Tsn1在供试材料中均未发现,扬麦系列品种(系)多为弱筋小麦,50%的扬麦系列品种(系)Glu-A1位点为1,86.7%的Glu-D1位点为2+12,除扬麦3号外,供试品种Glu-B3位点都为c。本研究明确了扬麦系列品种(系)部分重要性状功能基因的组成,为扬麦系列品种(系)在生产和育种上应用提供了理论依据。
Abstract:
In order to understand the composition of functional genes of the important traits in 30 Yangmai series wheat cultivars (lines), high-throughput kompetitive allele specific PCR(KASP) assay was used to detect some traits-associated genes related to plant height, photoperiodism, disease and pest resistance, pre-harvest sprouting resistance, drought resistance, kernel and quality traits. The results showed that 76.7% of the tested cultivars(lines) contained Rht-B1b. Photoperiod insensitivity genes Ppd-A1a and Ppd-D1a were detected in all the tested cultivars(lines). Grain weight related genes TaSus1-7A, TaSus2-2A, TaGS-D1 and TaGW2-6B were accumulated into Yangmai series wheat cultivars (lines). There were three pre-harvest sprouting resistance genes TaPHS1, Vp-B1 and TaSdr-B1 in Yangmai series wheat cultivars(lines), and the frequencies were 73.3%, 90.0% and 73.3%, respectively. The frequencies of drought resistance genes CWI-4A, CWI-5D, TaMoc-A1, TaSST-A2, TaSST-D1, Dreb-B1 and 1-feh-w3 were 66.7%, 100.0%, 13.3%, 100.0%, 93.3%, 20.0% and 90.0%, respectively. The fusarium head blight resistance gene Fhb1 could be detected only in five cultivars. On disease resistance, 70% cultivars(lines) contained leaf rust resistance gene Lr14a. The cereal cyst nematode resistance gene Cre8, the eyespot resistance gene Pch1, the stem rust resistance gene Sr2 and Sr36, the leaf rust resistance gene Lr21, Lr34, Lr47 and Lr67, the tan spot resistance gene Tsn1 cannot be detected in all the tested materials. Most Yangmai cultivars(lines) were soft wheat, which was due to the Pinb-D1a genotype of 50% tested materials at Glu-A1 locus, 2+12 at Glu-D1 of 86.7% tested materials and c at Glu-B3 locus of all tested materials except Yangmai3. In this study, the important functional genetic constitution of Yangmai series wheat cultivars (lines) was confirmed. The results can provide theoretical basis for production and breeding of Yangmai series wheat cultivars.

参考文献/References:

[1]程顺和,郭文善,王龙俊. 中国南方小麦[M].南京:江苏科学技术出版社,2012.
[2]张晓,张伯桥,江伟,等. 扬麦系列品种品质性状相关基因的分子检测[J].中国农业科学,2015,48(19):3779-3793.
[3]王慧,朱冬梅,王君婵,等. 扬麦16耐迟播早熟特性研究[J].麦类作物学报,2016,36(12):1657-1666.
[4]张仁杰,张全军,周瑛华,等. 小麦新品种扬麦20的特征特性及高产栽培技术[J].现代农业科技,2018(13):30,45.
[5]王克春,李德霞,朱训泳,等. 小麦品种扬麦23的种植表现及配套栽培技术[J].中国种业,2017(3):73-74.
[6]骆琴,童培银,陈豪明. 扬麦19特征特性和免耕高产栽培技术[J].农业科技通讯,2018(9):273-274.
[7]陆成彬,范金平,褚正虎,等. 高产抗病小麦新品种扬麦21的选育与应用[J].扬州大学学报(农业与生命科学版),2016,37(2):70-73.
[8]季萍萍,周刚,顾娟,等. 扬麦13的特征特性及品质调优高产栽培技术[J].现代农业科技,2015(22):38,51.
[9]王亚琦,孙子淇,郑峥,等. 作物分子标记辅助选择育种的现状与展望[J].江苏农业科学,2018,5(46):6-12.
[10]THE INTERNATIONAL WHEAT GENOME SEQUENCING CONSORTIUM(IWGSC), RUDI A, KELLYE E, et al. Shifting the limits in wheat research and breeding using a fully annotated reference genome[J]. Science, 2018,361(6403):1-13.
[11]WU P, HU J, ZOU J, et al. Fine mapping of the wheat powdery mildew resistance gene Pm52 using comparative genomics analysis and the Chinese Spring reference genomic sequence[J]. Theor Appl Genet, 2019,132(5):1451-1461.
[12]ZHOU X, HU T, LI X, et al. Genome-wide mapping of adult plant stripe rust resistance in wheat cultivar Toni[J]. Theor Appl Genet, 2019,132(6):1693-1704.
[13]SEMAGN K, BABU R, HEARNE S, et al. Single nucleotide polymorphism genotyping using Kompetitive Allele Specific PCR (KASP): overview of the technology and its application in crop improvement[J]. Molecular Breeding, 2014,33(1):1-14.
[14]TRICK M, ADAMSKI N M, MUGFORD S G, et al. Combining SNP discovery from next-generation sequencing data with bulked segregant analysis (BSA) to fine-map genes in polyploid wheat[J]. BMC Plant Biol, 2012,12(14):1-17.
[15]OKADA T, JAYASINGHE J, ECKERMANN P, et al. Effects of Rht-B1 and Ppd-D1 loci on pollinator traits in wheat[J]. Theor Appl Genet, 2019,132(7):1965-1979.
[16]ARJONA J M, ROYO C, DREISIGACKER S, et al. Effect of Ppd-A1 and Ppd-B1 allelic variants on grain number and thousand kernel weight of durum wheat and their impact on final grain yield[J]. Front Plant Sci, 2018,9(888):1-13.
[17]GUO Z, SONG Y, ZHOU R, et al. Discovery, evaluation and distribution of haplotypes of the wheat Ppd-D1 gene[J]. New Phytol, 2010,185(3):841-851.
[18]KISS T, BALLA K, VEISZ O, et al. Allele frequencies in the VRN-A1, VRN-B1 and VRN-D1 vernalization response and PPD-B1 and PPD-D1 photoperiod sensitivity genes, and their effects on heading in a diverse set of wheat cultivars (Triticum aestivum L.)[J]. Mol Breed, 2014,34:297-310.
[19]ZIKHALI M, WINGEN L U, GRIFFITHS S. Delimitation of the Earliness per se D1 (Eps-D1) flowering gene to a subtelomeric chromosomal deletion in bread wheat (Triticum aestivum)[J]. J Exp Bot, 2016,67(1):287-299.
[20]BULLRICH L, APPENDINO L, TRANQUILLI G, et al. Mapping of a thermo-sensitive earliness per se gene on Triticum monococcum chromosome 1A(m)[J]. Theor Appl Genet, 2002,105(4):585-593.
[21]FARICELLI M E, VALARIK M, DUBCOVSKY J. Erratum to: Control of flowering time and spike development in cereals: the earliness per se Eps-1 region in wheat, rice, and Brachypodium[J]. Funct Integr Genomics, 2016,10(2):293-306.
[22]OCHAGAVIA H, PRIETO P, ZIKHALI M, et al. Earliness per se by temperature interaction on wheat development[J]. Sci Rep, 2019,9(1):1-11.
[23]JIANG Q, HOU J, HAO C, et al. The wheat (T. aestivum) sucrose synthase 2 gene (TaSus2) active in endosperm development is associated with yield traits[J]. Funct Integr Genomics, 2011,11(1):49-61.
[24]JIANG Y, JIANG Q, HAO C, et al. A yield-associated gene TaCWI, in wheat: its function, selection and evolution in global breeding revealed by haplotype analysis[J]. Theor Appl Genet, 2015,128(1):131-143.
[25]GROOS C, ROBERT N, BERVAS E, et al. Genetic analysis of grain protein-content, grain yield and thousand-kernel weight in bread wheat[J]. Theor Appl Genet, 2003,106(6):1032-1040.
[26]SIMMONDS J, SCOTT P, LEVERINGTON W M, et al. Identification and independent validation of a stable yield and thousand grain weight QTL on chromosome 6A of hexaploid wheat (Triticum aestivum L.)[J]. BMC Plant Biol, 2014,14(191):1-13.
[27]LIU S, SEHGAL S K, LIN M, et al. Independent mis-splicing mutations in TaPHS1 causing loss of preharvest sprouting (PHS) resistance during wheat domestication[J]. New Phytol, 2015,208(3):928-935.
[28]ZHANG Y, MIAO X, XIA X, et al. Cloning of seed dormancy genes (TaSdr) associated with tolerance to pre-harvest sprouting in common wheat and development of a functional marker[J]. Theor Appl Genet, 2014,127(4):855-866.
[29]MONDINI L, NACHIT M, PORCEDDU E, et al. Identification of SNP mutations in DREB1, HKT1, and WRKY1 genes involved in drought and salt stress tolerance in durum wheat (Triticum turgidum L. var durum)[J]. OMICS, 2012,16(4):178-187.
[30]SU Z, BERNARDO A, TIAN B, et al. A deletion mutation in TaHRC confers Fhb1 resistance to Fusarium head blight in wheat[J]. Nat Genet, 2019,51(7):1099-1105.
[31]韩小东,张荣志,宋国琦,等. Fhbl基因不同等位变异在小麦品种资源中的分布[J].山东农业科学,2018,50(8):1-6.
[32]WILLIAMS J, TAYLOR P, BOGACKI P, et al. Mapping of the root lesion nematode ( Pratylenchus neglectus) resistance gene Rlnn1 in wheat[J]. Theor Appl Genet, 2002,104(5):874-879.
[33]ZANKE C D, RODEMANN B, LING J, et al. Genome-wide association mapping of resistance to eyespot disease (Pseudocercosporella herpotrichoides) in European winter wheat (Triticum aestivum L.) and fine-mapping of Pch1[J]. Theor Appl Genet, 2017,130(3):505-514.
[34]XU X, LI D, LIU Y, et al. Evaluation and identification of stem rust resistance genes Sr2, Sr24, Sr25, Sr26, Sr31 and Sr38 in wheat lines from Gansu province in China[J]. Peer J, 2017,5(12): 41-46.
[35]GUPTA S K, CHARPE A, KOUL S, et al. Development and validation of molecular markers linked to an Aegilops umbellulata-derived leaf-rust-resistance gene, Lr9, for marker-assisted selection in bread wheat[J]. Genome, 2005,48(5):823-830.
[36]HUERTA-ESPINO J, SINGH R P, REYNA-MARTINEZ J. First detection of virulence to genes Lr9 and Lr25 conferring resistance to leaf rust of wheat caused by puccinia triticina in Mexico[J]. Plant Disease, 2008,92(2):311-325.
[37]KOLMER J A, ANDERSON J A. First detection in north america of virulence in wheat leaf rust (Puccinia triticina) to seedling plants of wheat with Lr21[J]. Plant Dis, 2011,95(8):1032-1047.
[38]RINALDO A, GILBERT B, BONI R, et al. The Lr34 adult plant rust resistance gene provides seedling resistance in durum wheat without senescence[J]. Plant Biotechnol J, 2017,15(7):894-905.
[39]GUL'TIAEVA E I, ORINA A S, GANNIBAL F B, et al. The effectiveness of molecular markers for the identification of Lr28, Lr35, and Lr47 genes in common wheat[J]. Genetika, 2014,50(2):147-156.
[40]BASS C, HENDLEY R, ADAMS M J, et al. The Sbm1 locus conferring resistance to Soil-borne cereal mosaic virus maps to a gene-rich region on 5DL in wheat[J]. Genome, 2006,49(9):1140-1148.
[41]SHANKAR M, JORGENSEN D, TAYLOR J, et al. Loci on chromosomes 1A and 2A affect resistance to tan (yellow) spot in wheat populations not segregating for Tsn1[J]. Theor Appl Genet, 2017,130(12):2637-2654.
[42]LI Z, SI H, XIA Y, et al. Influence of low-molecular-weight glutenin subunit genes at Glu-A3 locus on wheat sodium dodecyl sulfate sedimentation volume and solvent retention capacity value[J]. J Sci Food Agric, 2015,95(10):2047-2052.
[43]彭佃亮.外源ABA和GA对小麦籽粒HMW-GS含量及GMP粒度分布的影响[J].江苏农业科学,2017,45(9):70-72.
[44]ZHANG W, Gianibelli M C, Rampling L R, et al. Characterisation and marker development for low molecular weight glutenin genes from Glu-A3 alleles of bread wheat (Triticum aestivum L.)[J]. Theor Appl Genet, 2004,108(7):1409-1419.
[45]LI X, LIU T, SONG L, et al. Influence of high-molecular-weight glutenin subunit composition at Glu-A1 and Glu-D1 loci on secondary and micro structures of gluten in wheat (Triticum aestivum L.)[J]. Food Chem, 2016,213:728-734.
[46]张平平,张瑜,唐果,等. 近红外光谱技术检测小麦谷蛋白大聚体含量[J].江苏农业学报,2017,33(6):1207-1211.
[47]ALI I, SARDAR Z, RASHEED A, et al. Molecular characterization of the puroindoline-a and b alleles in synthetic hexaploid wheats and in silico functional and structural insights into Pina-D1[J]. J Theor Biol, 2015,376:1-7.
[48]GROOS C, BERVAS E, CHANLIAUD E, et al. Genetic analysis of bread-making quality scores in bread wheat using a recombinant inbred line population[J]. Theor Appl Genet, 2007,115(3):313-323.
[49]HE X, HE Z, ZHANG L, et al. Allelic variation of polyphenol oxidase (PPO) genes located on chromosomes 2A and 2D and development of functional markers for the PPO genes in common wheat[J]. Theor Appl Genet, 2007,115(1):47-58.
[50]WEI J, GENG H, ZHANG Y, et al. Mapping quantitative trait loci for peroxidase activity and developing gene-specific markers for TaPod-A1 on wheat chromosome 3AL[J]. Theor Appl Genet, 2015,128(10):2067-2076.
[51]CONG L, WANG C, LI Z, et al. cDNA cloning and expression analysis of wheat (Triticum aestivum L.) phytoene and zeta-carotene desaturase genes[J]. Mol Biol Rep, 2010,37(7):3351-3361.
[52]SAITO M, VRINTEN PATRICIA, ISHIKAWA G, et al. A novel codominant marker for selection of the null Wx-B1 allele in wheat breeding programs[J]. Mol Breed, 2009,23:209-217.
[53]RASHEED A, WEN W, GAO F, et al. Development and validation of KASP assays for genes underpinning key economic traits in bread wheat[J]. Theor Appl Genet, 2016,129(10):1843-1860.
[54]孙树贵,李艳丽,敏鲁,等. 67份美国小麦品种矮秆基因的分子标记检测[J].麦类作物学报,2013,33(6):1087-1092.
[55]ELLIS H, SPIELMEYER W, GALE R, et al. Perfect markers for the Rht-B1b and Rht-D1b dwarfing genes in wheat[J]. Theor Appl Genet, 2002,105(6/7):1038-1042.
[56]邹景伟,贾万利,李立鑫,等. 120份小麦品种(系)重要性状功能基因的KASP检测[J].分子植物育种,2019,17(12):3945-3959.
[57]BUTLER J, BYRNE P, MOHAMMADI V, et al. Agronomic performance of alleles in a spring wheat population across a range of moisture levels[J]. Crop Science, 2005,45(3):939-947.
[58]高德荣,王慧,刘巧,等. 迟播早熟高产小麦新品种的培育[J].中国农业科学,2019,52(14):2379-2390.
[59]HAMADA M S, YIN Y, CHEN H, et al. The escalating threat of Rhizoctonia cerealis, the causal agent of sharp eyespot in wheat[J]. Pest Manag Sci, 2011,67(11):1411-1419.
[60]SOMERS D J, FEDAK G, CLARKE J, et al. Mapping of FHB resistance QTLs in tetraploid wheat[J]. Genome, 2006,49(12):1586-1593.
[61]高德荣,张晓,康建鹏,等. 长江中下游麦区小麦迟播的不利影响及育种对策[J].麦类作物学报,2014,34(2):279-283.
[62]CUTHBERT P A, SOMERS D J, THOMAS J, et al. Fine mapping Fhb1, a major gene controlling fusarium head blight resistance in bread wheat (Triticum aestivum L.)[J]. Theor Appl Genet, 2006,112(8):1465-1472.
[63]朱展望,徐登安,程顺和,等. 中国小麦品种抗赤霉病基因Fhb1的鉴定与溯源[J].作物学报,2018,44(4):473-482.
[64]程顺和,张勇,别同德,等. 中国小麦赤霉病的危害及抗性遗传改良[J].江苏农业学报,2012,28(5):938-942.
[65]金夏红,冯国华,刘东涛,等. 小麦抗叶锈病遗传研究进展[J].麦类作物学报,2017,37(4):504-512.
[66]张晓,李曼,江伟,等. 小麦品种扬麦16品质及其稳定性分析[J].江苏农业科学,2016,44(12):138-141.

相似文献/References:

[1]伍 宏,朱昌华,夏 凯,等.叶面喷施激动素对小麦品种济麦22品质的影响[J].江苏农业学报,2016,(02):299.[doi:10.3969/j.issn.1000-4440.2016.02.010]
 WU Hong,ZHU Chang-hua,XIA Kai,et al.Effect of foliar application of kinetin on quality of Triticum aestivum L. Jimai 22[J].,2016,(06):299.[doi:10.3969/j.issn.1000-4440.2016.02.010]
[2]蒋正宁,别同德,赵仁惠,等.受条锈菌诱导的小麦丝氨酸苏氨酸激酶基因TaS/TK的克隆与表达[J].江苏农业学报,2016,(05):980.[doi:10.3969/j.issn.1000-4440.2016.05.004]
 JIANG Zheng-ning,BIE Tong-de,ZHAO Ren-hui,et al.Cloning and expression analysis of a Serine/Threonine protein kinase gene TaS/TK in wheat in response to stripe rust fungal infection[J].,2016,(06):980.[doi:10.3969/j.issn.1000-4440.2016.05.004]
[3]丁彬彬,张旭,吴磊,等.小麦3B 短臂染色体抗赤霉病主效 QTL 区域候选基因的表达[J].江苏农业学报,2017,(01):6.[doi:10.3969/j.issn.1000-4440.2017.01.002 ]
 DING Bin-bin,ZHANG Xu,WU Lei,et al.Expression of candidate genes on the region of a major QTL for the resistance to Fusarium head blight on the short arm of chromosome 3B in wheat[J].,2017,(06):6.[doi:10.3969/j.issn.1000-4440.2017.01.002 ]
[4]周淼平,姚金保,张鹏,等.小麦幼苗纹枯病抗性评价新方法[J].江苏农业学报,2017,(01):61.[doi:10.3969/j.issn.1000-4440.2017.01.010 ]
 ZHOU Miao-ping,YAO Jin-bao,ZHANG Peng,et al.New method for the resistance evaluation of wheat sharp eyespot in seedling[J].,2017,(06):61.[doi:10.3969/j.issn.1000-4440.2017.01.010 ]
[5]吴磊,姜朋,张瑜,等.苏麦3号小麦穗部病毒诱导的基因沉默(VIGS)体系的建立及验证[J].江苏农业学报,2017,(02):248.[doi:doi:10.3969/j.issn.1000-4440.2017.02.002]
 WU Lei,JIANG Peng,ZHANG Yu,et al.Construction and validation of virus-induced gene silencing(VIGS) system in spike of wheat variety Sumai 3[J].,2017,(06):248.[doi:doi:10.3969/j.issn.1000-4440.2017.02.002]
[6]邵继锋,陈荣府,董晓英,等.利用分根技术研究小麦铝磷交互作用[J].江苏农业学报,2016,(01):78.[doi:10.3969/j.issn.1000-4440.2016.01.012 ]
 SHAO Ji-feng,CHEN Rong-fu,DONG Xiao-ying,et al.Aluminum-phosphorus interaction in wheat grown in a split-root device[J].,2016,(06):78.[doi:10.3969/j.issn.1000-4440.2016.01.012 ]
[7]叶景秀.小麦籽粒蛋白质双向电泳体系的优化[J].江苏农业学报,2015,(05):957.[doi:doi:10.3969/j.issn.1000-4440.2015.05.002]
 YE Jing-xiu.Optimization of two-dimensional electrophresis system for grain protein in spring wheat[J].,2015,(06):957.[doi:doi:10.3969/j.issn.1000-4440.2015.05.002]
[8]郑舒文,徐其隆,邹华文.脱落酸对涝渍胁迫下小麦产量的影响[J].江苏农业学报,2015,(05):967.[doi:doi:10.3969/j.issn.1000-4440.2015.05.004]
 ZHENG Shu-wen,XU Qi-long,ZOU Hua-wen.Yield of waterlogged wheat in response to ABA application[J].,2015,(06):967.[doi:doi:10.3969/j.issn.1000-4440.2015.05.004]
[9]张玉萍,马占鸿.不同施氮量下小麦遥感估产模型构建[J].江苏农业学报,2015,(06):1325.[doi:doi:10.3969/j.issn.1000-4440.2015.06.020]
 ZHANG Yu-ping,MA Zhan-hong.Yield estimation model of wheat based on remote sensing data under different nitrogen supply conditions[J].,2015,(06):1325.[doi:doi:10.3969/j.issn.1000-4440.2015.06.020]
[10]张卓亚,王晓琳,许晓明,等.腐植酸对小麦扬花期水分利用效率及灌浆进程的影响[J].江苏农业学报,2015,(04):725.[doi:10.3969/j.issn.1000-4440.2015.04.003]
 ZHANG Zhuo-ya,WANG Xiao-ling,XU Xiao-ming,et al.Effect of humic acid on water use efficiency and grouting process of wheat at flowering[J].,2015,(06):725.[doi:10.3969/j.issn.1000-4440.2015.04.003]
[11]郭瑞,姚维成,陈琛,等.镇麦品种相关品质性状基因的分子标记检测分析[J].江苏农业学报,2023,(01):1.[doi:doi:10.3969/j.issn.1000-4440.2023.01.001]
 GUO Rui,YAO Wei-cheng,CHEN Chen,et al.Analysis of molecular markers detection for genes related to quality traits in Zhenmai wheat cultivars[J].,2023,(06):1.[doi:doi:10.3969/j.issn.1000-4440.2023.01.001]

备注/Memo

备注/Memo:
收稿日期:2019-08-15 基金项目:扬州市科技计划项目(YZ2018041);国家重点研发计划项目(2017YFD0100801);江苏省自然科学基金项目(BK20171279);国家现代农业产业技术体系建设专项(CARS-3-2-11) 作者简介:王君婵(1987-),女,江苏南通人,硕士研究生,助理研究员,主要从事小麦遗传育种及育种信息化研究。(E-mail)britena@163.com 通讯作者:张伯桥,(E-mail)zbq@wheat.org.cn
更新日期/Last Update: 2020-01-09