[1]田孟祥,张时龙,何友勋,等.水稻耐低温基因bZIP73分子标记的开发与验证[J].江苏农业学报,2019,(06):1265-1270.[doi:doi:10.3969/j.issn.1000-4440.2019.06.001]
 TIAN Meng-xiang,ZHANG Shi-long,HE You-xun,et al.Development and verification of molecular markers of chilling tolerance gene bZIP73 in rice[J].,2019,(06):1265-1270.[doi:doi:10.3969/j.issn.1000-4440.2019.06.001]
点击复制

水稻耐低温基因bZIP73分子标记的开发与验证()
分享到:

江苏农业学报[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2019年06期
页码:
1265-1270
栏目:
遗传育种·生理生化
出版日期:
2019-12-31

文章信息/Info

Title:
Development and verification of molecular markers of chilling tolerance gene bZIP73 in rice
作者:
田孟祥1张时龙1何友勋1余本勋1余莉1宫彦龙2雷月2张大双2叶永印1
(1.毕节市农业科学研究所,贵州毕节551714;2.贵州省水稻研究所,贵州贵阳550006)
Author(s):
TIAN Meng-xiang1ZHANG Shi-long1HE You-xun1YU Ben-xun1YU Li1GONG Yan-long2LEI Yue2ZHANG Da-shuang2YE Yong-yin1
(1.Bijie Institute of Agricultural Sciences, Bijie 551714, China;2.Guizhou Rice Institute, Guiyang 550006, China)
关键词:
水稻耐低温bZIP73基因分子标记
Keywords:
ricechilling tolerancebZIP73 genemolecular marker
分类号:
S511.032
DOI:
doi:10.3969/j.issn.1000-4440.2019.06.001
文献标志码:
A
摘要:
为能够对耐低温基因bZIP73的不同类型进行准确鉴别,根据粳稻bZIP73Jap与籼稻bZIP73Ind在编码区的一个碱基差别,开发了由4条引物组成的分子标记,并应用7份籼稻、7份粳稻及3份籼粳杂交的F1材料对分子标记进行检测验证。电泳检测图显示,粳稻bZIP73Jap扩增出681 bp和342 bp 2种条带,籼稻bZIP73Ind扩增出681 bp和387 bp 2种条带,而籼粳杂合子F1则扩增出681 bp、342 bp及387 bp 3种条带,所有材料的扩增条带大小与预测目的片段均一致,说明所开发出的分子标记能对基因bZIP73的不同类型进行准确判断。该方法具有费用低廉、操作简便、快速高效等优点,可在资源鉴定和育种中推广应用。
Abstract:
In order to accurately identify the different types of chilling tolerance gene bZIP73, a molecular marker consisting of four primers was developed according to the difference of single base in coding region between japonica bZIP73Jap and indica bZIP73Ind. The molecular markers were tested by seven indica rice, seven japonica rice and three indica-japonica hybrid F1 materials. Electrophoretic detection results showed that 681 bp and 342 bp bands were amplified from bZIP73Jap, 681 bp and 387 bp bands were amplified from bZIP73Ind, and 681 bp, 342 bp and 387 bp bands were amplified from indica and japonica heterozygote F1. The size of amplified bands of all rice materials was consistent with that of the predicted target fragments, indicating that the developed molecular markers could accurately judge the different types of gene bZIP73. This method has the advantages of low cost, simple operation, fast and high efficiency, and can be widely used in resource identification and breeding.

参考文献/References:

[1]田孟祥,余本勋,张时龙,等. 一种水稻高氮利用率NRT1.1B基因功能标记的开发与应用[J]. 分子植物育种, 2016, 14(2): 410-416.
[2]孙彦坤,李浩然,兰倩 ,等. 黑龙江省热量资源变化特征及对水稻不同发育期生长的影响[J].南方农业学报,2018,49(9):1794-1803.
[3]杨文飞, 杜永林,顾大路,等. 4种调节物质对水稻耐低温能力的影响[J].江苏农业学报,2017,33(4):739-746.
[4]伍晓玲,于堃,罗艳,等. 安徽省水稻关键生育期低温冷害特征分析[J].江苏农业科学,2017,45(6):68-71.
[5]刘次桃,王威,毛毕刚,等. 水稻耐低温逆境研究:分子生理机制及育种展望[J]. 遗传, 2018, 40(3): 171-185.
[6]LIU F X, SUN C Q, TAN L B, et al. Identification and mapping of quantitative trait loci controlling cold-tolerance of Chinese common wild rice (O. rufipogon Griff.) at booting to flowering stages[J]. Chinese Science Bulletin, 2003, 48(19): 2068-2071.
[7]ANDAYA V, MACKILL D. QTLs conferring cold tolerance at the booting stage of rice using recombinant inbred lines from a japonica×indica cross[J]. Theor Appl Genet, 2003, 106(6): 1084-1090.
[8]XU L M, ZHOU L, ZENG Y W, et al. Identification and mapping of quantitative trait loci for cold tolerance at the booting stage in a japonica rice near-isogenic line[J]. Plant Sci, 2008, 174(3): 340-347.
[9]KUROKI M, SAITO K, MATSUBA S, et al. Quantitative trait locus analysis for cold tolerance at the booting stage in a rice cultivar, Hatsushizuku[J]. Japan Agricultural Research Quarterly: JARQ, 2009, 43(2): 115-121.
[10]LEI J G, ZHU S, SHAO C H, et al. Mapping quantitative trait loci for cold tolerance at the booting stage in rice by using chromosome segment substitution lines[J]. Crop and Pasture Science, 2018, 69(3): 278-283.
[11]SHIRASAWA S, ENDO T, NAKAGOMI K, et al. Delimitation of a QTL region controlling cold tolerance at booting stage of a cultivar, ‘Lijiangxintuanheigu’, in rice, Oryza sativa L.[J]. Theoretical & Applied Genetics, 2012, 124(5): 937-946.
[12]BISWAS P S, KHATUN H, DAS N, et al. Mapping and validation of QTLs for cold tolerance at seedling stage in rice from an indica cultivar Habiganj Boro VI (Hbj.BVI)[J]. Biotech, 2017, 7(6): 359.
[13]王棋,范淑秀,郭江华,等. 利用籼粳交RIL群体对水稻发芽期和苗期耐冷性的QTL分析[J]. 华北农学报, 2019, 34(1): 83-88.
[14]朱金燕,杨梅,嵇朝球,等. 利用染色体单片段代换系定位水稻芽期耐冷QTL[J]. 植物学报, 2015, 50(3): 338-345.
[15]SAITO K, HAYANO-SAITO Y, KUROKI M, et al. Map-based cloning of the rice cold tolerance gene Ctb1[J]. Plant Science (Oxford), 2010, 179(1/2):97-102.
[16]KIM S, ANDAYA V, TAI T. Cold sensitivity in rice (Oryza sativa L.) is strongly correlated with a naturally occurring Ile99Val mutation in the multifunctional glutathione transferase isozyme GSTZ2[J]. Biochemical Journal, 2011, 435(2): 373-380.
[17]FUJINO K, SEKIGUCHI H. Origins of functional nucleotide polymorphisms in a major quantitative trait locus, qLTG3-1, controlling low-temperature germinability in rice[J]. Plant Molecular Biology, 2011, 75(1/2):1-10.
[18]LU G, WU F Q, WU W, et al. Rice LTG1 is involved in adaptive growth and fitness under low ambient temperature[J]. The Plant Journal, 2014, 78(3): 468-480.
[19]MA Y, DAI X Y, XU Y Y, et al. COLD1 Confers chilling tolerance in rice[J]. Cell, 2015, 160(6): 1209-1221.
[20]ZHAO J, ZHANG S, DONG J, et al. A novel functional gene associated with cold tolerance at the seedling stage in rice[J]. Plant Biotechnology Journal, 2017, 15(9): 1141-1148.
[21]ZHANG Z Y, LI J J, PAN Y H, et al. Natural variation in CTB4a enhances rice adaptation to cold habitats[J]. Nature Communications, 2017, 8: 14788.
[22]LIU C T, OU S J, MAO B G, et al. Early selection of bZIP73 facilitated adaptation of japonica rice to cold climates[J]. Nature Communications, 2018, 9(1): 3302.
[23]LIU C T, SCHLAPPI M, MAO B G, et al. The bZIP73 transcription factor controls rice cold tolerance at the reproductive stage[J]. Plant Biotechnology Journal, 2019,17(9):1834-1849.
[24]田孟祥,张时龙,余本勋,等. 基于四引物扩增受阻突变体系PCR快速鉴定水稻S5基因的籼粳属性[J]. 作物杂志, 2015(6): 48-53.
[25]刘次桃,区树俊,储成才. bZIP73:影响粳稻耐低温的关键基因[J]. 遗传, 2018, 40(9): 789-790.

相似文献/References:

[1]王士磊,丁正权,黄海祥.水稻隐性早熟突变体ref早熟性的遗传分析和基因定位[J].江苏农业学报,2016,(04):721.[doi:10.3969/j.issn.100-4440.2016.04.001]
 WANG Shi-lei,DING Zheng-quan,HUANG Hai-xiang.Inheritance and gene mapping of recessive earliness in rice (Oryza sativa L.)[J].,2016,(06):721.[doi:10.3969/j.issn.100-4440.2016.04.001]
[2]王在满,郑乐,张明华,等.不同播种方式对直播水稻倒伏指数和根系生长的影响[J].江苏农业学报,2016,(04):725.[doi:10.3969/j.issn.100-4440.2016.04.002]
 WANG Zai-man,ZHENG Le,ZHANG Ming-hua,et al.Effects of seeding manners on lodging index and root growth of directseeded rice[J].,2016,(06):725.[doi:10.3969/j.issn.100-4440.2016.04.002]
[3]易能,薛延丰,石志琦,等.微囊藻毒素对水稻种子萌发和幼苗生长的胁迫作用[J].江苏农业学报,2016,(04):729.[doi:10.3969/j.issn.100-4440.2016.04.003]
 YI Neng,XUE Yan-feng,SHI Zhi-qi,et al.Inhibitory effect of microcystins on seed germination and seedling growth of rice[J].,2016,(06):729.[doi:10.3969/j.issn.100-4440.2016.04.003]
[4]刘凯,王爱民,严国红,等.一个水稻显性矮秆突变体的遗传特性与降株高能力[J].江苏农业学报,2016,(05):968.[doi:10.3969/j.issn.1000-4440.2016.05.002]
 LIU Kai,WANG Ai-min,YAN Guo-hong,et al.Genetic analysis and plant height reduction of a dominant dwarf mutant of rice[J].,2016,(06):968.[doi:10.3969/j.issn.1000-4440.2016.05.002]
[5]王红,杨镇,裴文琪,等.功能性微生物制剂对镉胁迫下水稻生长及生理特性的影响[J].江苏农业学报,2016,(05):974.[doi:10.3969/j.issn.1000-4440.2016.05.003]
 WANG Hong,YANG Zhen,PEI Wen-qi,et al.Growth and physiological characteristics of cadmium-stressed rice influenced by functional microorganism agent[J].,2016,(06):974.[doi:10.3969/j.issn.1000-4440.2016.05.003]
[6]孙玲,单捷,毛良君,等.基于遥感和Moran's I指数的水稻面积变化空间自相关性研究[J].江苏农业学报,2016,(05):1060.[doi:10.3969/j.issn.1000-4440.2016.05.017]
 SUN Ling,SHAN Jie,MAO Liang-jun,et al.Spatial autocorrelation of changes in paddy rice area based on remote sensing and Moran’s I index[J].,2016,(06):1060.[doi:10.3969/j.issn.1000-4440.2016.05.017]
[7]张晓忆,李卫国,景元书,等.多种光谱指标构建决策树的水稻种植面积提取[J].江苏农业学报,2016,(05):1060.[doi:10.3969/j.issn.1000-4440.2016.05.018]
 ZHANG Xiao-yi,LI Wei-guo,JING Yuan-shu,et al.Extraction of paddy rice area by constructing the decision tree with multiple spectral indices[J].,2016,(06):1060.[doi:10.3969/j.issn.1000-4440.2016.05.018]
[8]裔传灯,李玮,王德荣,等.水稻GW5基因的1212-bp Indel变异对粒形的影响[J].江苏农业学报,2016,(06):1201.[doi:doi:10.3969/j.issn.1000-4440.2016.06.001]
 YI Chuan-deng,LI Wei,WANG De-rong,et al.Effect of 1212-bp Indel variation of gene GW5 on rice grain shape[J].,2016,(06):1201.[doi:doi:10.3969/j.issn.1000-4440.2016.06.001]
[9]刘红江,陈虞雯,张岳芳,等.不同播栽方式对水稻叶片光合特性及产量的影响[J].江苏农业学报,2016,(06):1206.[doi:doi:10.3969/j.issn.1000-4440.2016.06.002]
 LIU Hong-jiang,CHEN Yu-wen,ZHANG Yue-fang,et al.Effects of planting pattern on leaf photosynthetic characteristics and yield of rice[J].,2016,(06):1206.[doi:doi:10.3969/j.issn.1000-4440.2016.06.002]
[10]郭保卫,许轲,魏海燕,等.钵苗机插水稻茎秆的抗倒伏能力[J].江苏农业学报,2016,(06):1280.[doi:doi:10.3969/j.issn.1000-4440.2016.06.014]
 GUO Bao-wei,XU Ke,WEI Hai-yan,et al.Culm lodging resistance characteristics of bowl seedling mechanical-transplanting rice[J].,2016,(06):1280.[doi:doi:10.3969/j.issn.1000-4440.2016.06.014]

备注/Memo

备注/Memo:
收稿日期:2019-07-17 基金项目:国家重点研发计划项目(2017YFD0100205);贵州省科技成果应用及产业化计划项目[黔科合成果(2018)4306];毕节试验区特色优势作物资源研发平台建设黔科合条中补地项目[(2015)4003];毕节市科技支撑计划项目[毕科合字(2016)20号] 作者简介:田孟祥(1983-),男,贵州麻江人,硕士,助理研究员,主要从事水稻育种及栽培研究。(E-mail) tmengxiang@126.com 通讯作者:张时龙,(E-mail)bjrice@163.com
更新日期/Last Update: 2020-01-09