参考文献/References:
[1]李茉莉,孙桂华,赵阳. 小杂粮作物的开发价值及战略意义[J]. 园艺与种苗,2005(2):123-124.
[2]郑卓杰. 中国食用豆类学[M]. 北京:中国农业出版社,1997.
[3]《气候变化国家评估报告》编写委员会. 气候变化国家评估报告[M]. 北京:科学出版社,2007.
[4]翟盘茂,王萃萃,李威. 极端降水事件变化的观测研究[J]. 气候变化研究进展,2007,3(3):144-148.
[5]OCHSNER T E, COSH M H, CUENCA R H, et al. State of the art in large-scale soil moisture monitoring[J]. Soil Science Society of America Journal,2013,77(6):1888-1919.
[6]金祎婷,刘文辉,刘凯强,等. 全生育期干旱胁迫对‘青燕1号’燕麦叶绿素荧光参数的影响[J]. 草业学报,2022,31(6): 112-126.
[7]岳焕然,李茂松,安江勇.基于颜色和纹理特征的玉米干旱识别[J]. 中国农学通报,2018,34(24):18-28.
[8]NAIK H S, ZHANG J, LOFQUIST A, et al. A real-time phenotyping framework using machine learning for plant stress severity rating in soybean[J]. Plant Methods,2017,13:1-12.
[9]龙燕,马敏娟,王英允,等. 利用叶绿素荧光动力学参数识别苗期番茄干旱胁迫状态[J]. 农业工程学报,2021,37(11):172-179.
[10]ZHOU C Y, LE J, HUA D X, et al. Imaging analysis of chlorophyll fluorescence induction for monitoring plant water and nitrogen treatments[J]. Measurement,2018,136(6):1-9.
[11]AN J, LI W, LI M, et al. Identification and classification of maize drought stress using deep convolutional neural network[J]. Symmetry,2019,11(2):256.
[12]XIE W, WEI S, ZHENG Z, et al. A cnn-based lightweight ensemble model for detecting defective carrots[J]. Biosystems Engineering,2021,208(2):287-299.
[13]KAMILARIS A, PRENAFETA-BOLD F X. Deep learning in agriculture:a survey[J]. Computers and Electronics in Agriculture,2018,147:70-90.
[14]ZHANG X, XUN Y, CHEN Y. Automated identification of citrus diseases in orchards using deep learning[J]. Biosystems Engineering,2022,223:249-258.
[15]ABADE A D S, PORTO L F, FERREIRA P A, et al. NemaNet:a convolutional neural network model for identification of soybean nematodes[J]. Biosystems Engineering,2022,213:39-62.
[16]KOZOWSKI M, GRECKI P, SZCZYPINSKI P M. Varietal classification of barley by convolutional neural networks[J]. Biosystems Engineering,2019,184:155-165.
[17]LECUN Y, BENGIO Y, HINTON G. Deep learning[J]. Nature,2015,521(7553):436-444.
[18]赵奇慧 ,李莉,张淼,等. 基于迁移学习的温室番茄叶片水分胁迫诊断方法[J]. 农业机械学报,51(增刊1):340-347.
[19]OCHSNER T E, COSH M H, CUENCA R H, et al. State of the art in large-scale soil moisture monitoring[J]. Soil Science Society of America Journal,2013,77(6):1888-1919.
[20]CHANDEL S N, CHAKRABORTY K S, RAJWADE A Y, et al. Identifying crop water stress using deeplearning models[J]. Neural Computing and Applications,2020,33(10):5353-5367.
[21]刘芳军,李玥,武凌,等. 基于改进ResNet18的胡麻干旱胁迫识别与分类研究[J]. 江西农业大学学报,2023,45(6):1517-1527.
[22]XIA J, ZHANG W Y, ZHANG W X, et al. A cloud computing-based approach using the visible near-infrared spectrum to classify greenhouse tomato plants under water stress[J]. Computers and Electronics in Agriculture,2021,181:105966.
[23]KUO C E, TU Y K, FANG S L, et al. Early detection of drought stress in tomato from spectroscopic data:a novel convolutional neural network with feature selection[J]. Chemometrics and Intelligent Laboratory Systems,2023,239:104869.
[24]CHEN D J, NEUMANN K, FRIEDEL S, et al. Dissecting the phenotypic components of crop plant growth and drought responses based on high-throughput image analysis[J]. The Plant Cell,2014,26(12):4636.
[25]KAUTZ B, NOGA G, HUNSCHE M. Sensing drought-and salinity-imposed stresses on tomato leaves by means of fluorescence techniques[J]. Plant Growth Regulation,2014,73(3):279-288.
[26]MISHRA K B, IANNACONE R, PETROZZA A, et al. Engineered drought tolerance in tomato plants is reflected in chlorophyll fluorescence emission[J]. Plant Science,2012,182:79-86.
[27]WANG Y, AN Y, YU J, et al. Different responses of photosystem Ⅱ and antioxidants to drought stress in two contrasting populations of sour jujube from the Loess Plateau,China[J]. Ecological Research,2016,31(6):761-775.
[28]GUO Y Y, YU H Y, KONG D S, et al. Effects of drought stress on growth and chlorophyll fluorescence of Lycium ruthenicum murr. seedlings[J]. Photosynthetica,2016,54(4):524-531.
[29]LOTFI R, PESSARAKLI M, GHARAVI-KOUCHEBAGH P, et al. Physiological responses of brassica napus to fulvic acid under water stress:chlorophyll a fluorescence and antioxidant enzyme activity[J]. Crop Journal,2015,3(5):434-439.
[30]SHARMA D K, ANDERSEN S B, OTTOSEN C O, et al. Wheat cultivars selected for high Fv/Fm under heat stress maintain high photosynthesis,total chlorophyll,stomatal conductance,transpiration and dry matter[J]. Physiologia Plantarum,2015,153(2):284-298.
[31]HUMPLIK J F, LAZAR D, FURST T, et al. Automated integrative high-throughput phenotyping of plant shoots:a case study of the cold-tolerance of pea (Pisum sativum L.)[J]. Plant Methods,2015,11:1-11.
[32]BRESSON J, VASSEUR F, DAUZAT M, et al. Interact to survive:phyllobacterium brassicacearum improves Arabidopsis tolerance to severe water deficit and growth recovery[J]. PLoS One,2014,9(9):e107607.
[33]梁欢,韦宝,陈静,等. 基于叶绿素荧光参数的紫花苜蓿种质苗期抗旱性评价[J]. 草地学报,2020,28(1):45-55.
[34]余骥远,高尚兵,李洁,等. 基于MS-PLNet和高光谱图像的绿豆叶斑病病级分类[J]. 江苏农业科学,2023,51(6):178-186.
[35]李莉,万正煌,陈宏伟,等. 不同群体密度对绿豆农艺性状和产量的影响[J]. 农业科学与技术,2010,11(7):62-65.
[36]王小英,王孟,王斌,等. 不同氮肥用量对绿豆主要农艺性状及产量的影响[J]. 中国农学通报,2020,36(17):95-98.
[37]冯蕊,周琪,吴令上,等. PEG6000模拟干旱胁迫对铁皮石斛幼苗生理和叶绿素荧光特性的影响[J]. 浙江农林大学学报,2024,41(1):132-144.
[38]浦婵,董文渊,张孟楠,等. 聚乙二醇6000模拟干旱胁迫及复水对黄竹幼苗抗性生理特性的影响[J]. 东北林业大学学报,2018,46(8):31-37.
[39]姚松林. 基于卷积神经网络的荔枝病虫害图像识别技术研究[J]. 电脑编程技巧与维护,2023,12:133-135.
[40]李静,徐其江. 干旱胁迫对绿豆农艺性状及产量的影响研究[J]. 新疆农垦科技,2017,40(7):8-11.
[41]冯晓硕,沈樾,王冬琦. 基于图像的数据增强方法发展现状综述[J]. 计算机科学与应用,2021,11(2):13.
[42]温艳兰,陈友鹏,王克强,等. 基于机器视觉的病虫害检测综述[J]. 中国粮油学报,2022,37(10):271-279.
相似文献/References:
[1]佚名 佚名 佚名.三才期刊采编系统文章正在整理中…[J].江苏农业学报,2005,(01):5.
XIE Xin,ZHAO Zhong.三才期刊采编系统文章正在整理中…[J].,2005,(01):5.
[2]佚名 佚名 佚名.三才期刊采编系统文章正在整理中…[J].江苏农业学报,2006,(01):5.
XIE Xin,ZHAO Zhong.三才期刊采编系统文章正在整理中…[J].,2006,(01):5.
[3]熊洁,邹晓芬,邹小云,等.干旱胁迫对不同基因型油菜农艺性状和产量的影响[J].江苏农业学报,2015,(03):494.[doi:10.3969/j.issn.1000-4440.2015.03.005]
XIONG Jie,ZOU Xiao-fen,ZOU Xiao-yun,et al.Effects of drought stress on agronomic traits and yield of different rapeseed genotypes[J].,2015,(01):494.[doi:10.3969/j.issn.1000-4440.2015.03.005]
[4]肇莹,杨镇,杨涛,等.植物内生菌醇提取物对草坪草抗旱性的影响[J].江苏农业学报,2015,(01):39.[doi:10.3969/j.issn.1000-4440.2015.01.006]
ZHAO Ying,YANG Zhen,YANG Tao,et al.Influence of plant endophyte extract on turfgrass drought tolerance[J].,2015,(01):39.[doi:10.3969/j.issn.1000-4440.2015.01.006]
[5]孟力力,张俊,闻婧.干旱胁迫对彩叶草光合特性及叶片超微结构的影响[J].江苏农业学报,2015,(01):180.[doi:10.3969/j.issn.1000-4440.2015.01.028]
MENG Li-li,ZHANG Jun,WEN Jing.Changes of photosynthetic characteristics of Coleus blumei and mesophyll cell ultrastructure in response to drought stress[J].,2015,(01):180.[doi:10.3969/j.issn.1000-4440.2015.01.028]
[6]张丽丽,徐碧玉,刘菊华,等.MaASR1基因通过乙烯途径提高拟南芥抗旱性的作用机制[J].江苏农业学报,2018,(03):511.[doi:doi:10.3969/j.issn.1000-4440.2018.03.005]
ZHANG Li-li,XU Bi-yu,LIU Ju-hua,et al.The regulation mechanism of MaASR1 gene for improving the drought resistance of Arabidopsis by ethylene pathway[J].,2018,(01):511.[doi:doi:10.3969/j.issn.1000-4440.2018.03.005]
[7]麻云霞,李钢铁,张宏武,等.外源硅对酸枣生长和生理生化特征的影响[J].江苏农业学报,2018,(05):1113.[doi:doi:10.3969/j.issn.1000-4440.2018.05.021]
MA Yun-xia,LI Gang-tie,ZHANG Hong-wu,et al.Effects of exogenous silicon on growth, physiological and biochemical characteristics of zizyphus jujube plant[J].,2018,(01):1113.[doi:doi:10.3969/j.issn.1000-4440.2018.05.021]
[8]葛道阔,曹宏鑫,杨余旺,等.干旱胁迫下油菜栽培模拟优化决策系统(Rape-CSODS)的订正及其检验[J].江苏农业学报,2019,(01):56.[doi:doi:10.3969/j.issn.1000-4440.2019.01.008]
GE Dao-kuo,CAO Hong-xin,YANG Yu-wang,et al.Modification and verification of Rape-CSODS under drought stress[J].,2019,(01):56.[doi:doi:10.3969/j.issn.1000-4440.2019.01.008]
[9]陈丽,焦健,朱绍丹,等.油橄榄对牧草间作与干旱胁迫交互作用的根系生理响应[J].江苏农业学报,2019,(06):1434.[doi:doi:10.3969/j.issn.1000-4440.2019.06.024]
CHEN Li,JIAO Jian,ZHU Shao-dan,et al.Root physiological response of olive to the interaction of pasture intercropping and drought stress[J].,2019,(01):1434.[doi:doi:10.3969/j.issn.1000-4440.2019.06.024]
[10]陈丽,焦健,朱绍丹,等.牧草间作对干旱胁迫下油橄榄根系形态特征的影响[J].江苏农业学报,2020,(01):39.[doi:doi:10.3969/j.issn.1000-4440.2020.01.006]
CHEN Li,JIAO Jian,ZHU Shao-dan,et al.Effects of pasture intercropping on root morphological characteristics of olive under drought stress[J].,2020,(01):39.[doi:doi:10.3969/j.issn.1000-4440.2020.01.006]
[11]周旭旭,刘金洋,陈新,等.绿豆Alfin1-like基因家族的鉴定与干旱胁迫下的表达分析[J].江苏农业学报,2022,38(05):1179.[doi:doi:10.3969/j.issn.1000-4440.2022.05.004]
ZHOU Xu-xu,LIU Jin-yang,CHEN Xin,et al.Identification of Alfin1-like gene family in Vigna radiata (L.) Wilczek and its expression analysis under drought stress[J].,2022,38(01):1179.[doi:doi:10.3969/j.issn.1000-4440.2022.05.004]