[1]周旭旭,刘金洋,陈新,等.绿豆Alfin1-like基因家族的鉴定与干旱胁迫下的表达分析[J].江苏农业学报,2022,38(05):1179-1187.[doi:doi:10.3969/j.issn.1000-4440.2022.05.004]
 ZHOU Xu-xu,LIU Jin-yang,CHEN Xin,et al.Identification of Alfin1-like gene family in Vigna radiata (L.) Wilczek and its expression analysis under drought stress[J].,2022,38(05):1179-1187.[doi:doi:10.3969/j.issn.1000-4440.2022.05.004]
点击复制

绿豆Alfin1-like基因家族的鉴定与干旱胁迫下的表达分析()
分享到:

江苏农业学报[ISSN:1006-6977/CN:61-1281/TN]

卷:
38
期数:
2022年05期
页码:
1179-1187
栏目:
遗传育种·生理生化
出版日期:
2022-10-31

文章信息/Info

Title:
Identification of Alfin1-like gene family in Vigna radiata (L.) Wilczek and its expression analysis under drought stress
作者:
周旭旭12刘金洋2陈新2薛晨晨2陈景斌2林云2闫强2吴然然2朱月林1袁星星2
(1.南京农业大学园艺学院,江苏南京210095;2.江苏农业科学院经济作物研究所/江苏省高效园艺作物遗传改良重点实验室,江苏南京210014)
Author(s):
ZHOU Xu-xu12LIU Jin-yang2CHEN Xin2XUE Chen-chen2CHEN Jing-bin2LIN Yun2YAN Qiang2WU Ran-ran2ZHU Yue-lin1YUAN Xing-xing2
(1.College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China;2.Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences/Jiangsu Key Laboratory of Efficient Horticultural Crop Genetic Improvement, Nanjing 210014, China)
关键词:
绿豆Alfin1-like基因家族干旱胁迫
Keywords:
Vigna radiata (L.) WilczekAlfin1-like gene familydrought stress
分类号:
S522
DOI:
doi:10.3969/j.issn.1000-4440.2022.05.004
文献标志码:
A
摘要:
Alfin1-like(AL)转录因子家族在对非生物胁迫的反应中具有重要调控作用。为了探究绿豆[Vigna radiata (L.)Wilczek] AL基因家族成员在干旱胁迫下的表达情况,本研究在前期以苏绿1号为试验材料完成全基因组测序和盐胁迫下转录组测序的基础上,采用同源比对的方法鉴定绿豆AL转录因子(VrAL)家族基因,分析其生物学特性;用1/2浓度Hoagland营养液培养绿豆幼苗,对照组(CK)无聚乙二醇(PEG 6000)、处理组含有20% PEG 6000,采用qRT-PCR方法探索VrAL基因家族成员在干旱胁迫下基因表达的差异。结果表明:(1)共鉴定到10个VrAL基因,根据其在染色体上的位置依次命名为VrAL1~VrAL10,其编码区长度范围为717~765 bp。(2)10个VrAL基因均含有4个内含子和5个外显子,其中8个VrAL基因的启动子区域存在抗逆和植物激素响应元件。(3)qRT-PCR分析结果表明,处理组根中VrAL1、VrAL5、VrAL7和VrAL9上调表达,叶中VrAL8、VrAL9和VrAL10上调表达,它们在绿豆对干旱胁迫响应中发挥了重要的作用。
Abstract:
Alfin1 like (AL) transcription factor family plays an important regulatory role in response to abiotic stress. To explore the expression pattern of AL gene family members of Vigna radiata (L.) Wilczek under drought stress, the VrAL transcription factor family genes of mung bean were identified by homologous alignment and their biological characteristics were analyzed, based on our previous work of whole genome sequencing and transcriptome sequencing of the mung bean material Sulv No.1 under salt stress. Mung bean seedlings were cultured with 1/2 concentration of Hoagland nutrient solution, the control (CK) did not contain polyethylene glycol 6000 (PEG6000) and the treatment group contained 20% PEG6000. The expression differences of VrAL gene family members under drought stress were detected by qRT-PCR. The results showed that, a total of ten VrAL genes were identified and named as VrAL1- VrAL10 according to their positions on the chromosomes, and the lengths of their coding regions ranged from 717 bp to 765 bp. The above ten VrAL genes all contained four introns and five exons, of which eight VrAL genes contained stress resistant and phytohormone response elements in their promoter regions. Results of qRT-PCR analysis showed that under the PEG 6000 conditions the expression levels of VrAL1, VrAL5, VrAL7 and VrAL9 in roots were up-regulated, and VrAL8, VrAL9 and VrAL10 in leaves were up-regulated. The up-regulated VrAL genes may play important roles in responses to drought stresses of mung bean.

参考文献/References:

[1]YU S, JIE G, YANG F, et al. Molecular evolutionary analysis of the alfin-like protein family in Arabidopsis lyrata, Arabidopsis thaliana, and Thellungiella halophila[J]. PLoS One, 2013, 8(7): e66838.
[2]BASTOLA D R, PETHE V V, WINICOV I. Alfin1, a novel zinc-finger protein in alfalfa roots that binds to promoter elements in the salt-inducible MsPRP2 gene[J]. Plant Molecular Biology, 1998, 38(6): 1123-1135.
[3]WINICOV I, BASTOLA D R. Transgenic overexpression of the transcription factor alfin1 enhances expression of the endogenous MsPRP2 gene in alfalfa and improves salinity tolerance of the plants[J]. Plant Physiology, 1999, 120(2): 473-480.
[4]WEI W, HUANG J, HAO Y J, et al. Soybean GmPHD-type transcription regulators improve stress tolerance in transgenic Arabidopsis plants[J]. PLoS One, 2009, 4(9): e7209.
[5]MOLINA C, ROTTER B, HORRES R, et al. SuperSAGE: the drought stress-responsive transcriptome of chickpea roots[J]. BMC Genomics, 2008, 9(1): 553-553.
[6]KANG Y J, KIM S K, KIM M Y, et al. Genome sequence of mungbean and insights into evolution within Vigna species[J]. Nature Communications, 2014, 5: 5443.
[7]戴必胜,杨敏,陈秀虎. 霍格兰溶液培养对水仙生长发育的影响[J]. 武汉植物学研究, 2006(5): 485-488.
[8]曹志敏,张志肖,侯东生,等. PEG-6000溶液胁迫下绿豆萌发期抗旱性的鉴定与评价[J]. 河北农业科学, 2015, 19(3): 27-31.
[9]谢敏,王萍,何红红,等. 葡萄Alfin-like转录因子家族的鉴定和表达分析[J]. 西北植物学报, 2020, 40(9): 1467-1474.
[10]CAMACHO C, COULOURIS G, AVAGYAN V, et al. BLAST+: architecture and applications[J]. BMC Bioinformatics, 2009, 10: 421.
[11]WILKINS M R, GASTEIGER E, BAIROCH A, et al. Protein identification and analysis tools in the ExPASy server[J]. Methods in Molecular Biology, 1999, 112: 531-552.
[12]CHOU K C, SHEN H B. Cell-PLoc: a package of web servers for predicting subcellular localization of proteins in various organisms[J]. Nature Protocols, 2007, 3(2): 153-162.
[13]CHEN C J, CHEN H, ZHANG Y, et al. TBtools: an integrative toolkit developed for interactive analyses of big biological data[J]. Molecular Plant, 2020, 13(8): 1194-1202.
[14]LESCOT M, DéHAIS P, THIJS G, et al. PlantCARE, a database of plant cis-acting regulatory elements and a portal to tools for in silico analysis of promoter sequences[J]. Nucleic Acids Research, 2002, 30(1): 325-327.
[15]SCHMITTGEN T D, LIVAK K J. Analyzing real-time PCR data by the comparative CT method[J]. Nature Protocols, 2008, 3(6): 1101-1108.
[16]冯英,刘庆坡,薛庆中. 水稻与拟南芥PHD-finger蛋白的系统分析[J]. 遗传学报, 2004, 31(11): 1284-1293.
[17]WANG Q Q, LIU J Y, YU W, et al. Systematic analysis of the maize PHD-finger gene family reveals a subfamily involved in abiotic stress response[J]. International Journal of Molecular Sciences, 2015, 16(10): 23517-23544.
[18]XIONG Y Q, LIU T Y, TIAN C Q, et al. Transcription factors in rice: a genome-wide comparative analysis between monocots and eudicots[J]. Plant Molecular Biology, 2005, 59(1): 191-203.
[19]QU L J, ZHU Y X. Transcription factor families in Arabidopsis: major progress and outstanding issues for future research[J]. Current Opinion in Plant Biology, 2006, 9(5): 544-549.
[20]KAYUM M A, PARK J I, AHMED N U, et al. Characterization and stress-induced expression analysis of alfin-like transcription factors in Brassica rapa[J]. Molecular Genetics & Genomics, 2015,290(4): 1299-1311.
[21]LEE W Y, LEE D, CHUNG W I, et al. Arabidopsis ING and alfin1-like protein families localize to the nucleus and bind to H3K4me3/2 via plant homeodomain fingers[J]. Plant Journal, 2010, 58(3): 511-524.
[22]WINICOV I. Alfin1 transcription factor overexpression enhances plant root growth under normal and saline conditions and improves salt tolerance in alfalfa[J]. Planta, 2000, 210(3): 416-422.
[23]WINICOV I, VALLIYODAN B, HOOBER L X K. The MsPRP2 promoter enables strong heterologous gene expression in a root-specific manner and is enhanced by overexpression of Alfin1[J]. Planta, 2004, 219(6): 925-935.
[24]WEI W, ZHANG Y Q, TAO J, et al. The Alfin-like homeodomain finger protein AL5 suppresses multiple negative factors to confer abiotic stress tolerance in Arabidopsis[J]. Plant Journal, 2015, 81(6): 871-883.
[25]CHANDRIKA N P, SUNDARAVELPANDIAN K, YU S M, et al. ALFIN-LIKE 6 is involved in root hair elongation during phosphate deficiency in Arabidopsis[J]. New Phytologist, 2013, 8(3): 709-720.
[26]TAO J J, WEI W, PAN W J, et al. An alfin-like gene from atriplex hortensis enhances salt and drought tolerance and abscisic acid response in transgenic Arabidopsis[J]. Scientific Reports, 2018, 8(1): 2707.
[27]MOUMENI A, SATOH K, KONDOH H, et al. Comparative analysis of root transcriptome profiles of two pairs of drought-tolerant and susceptible rice near-isogenic lines under different drought stress[J]. BMC Plant Biology, 2011, 11(1): 1-17.

相似文献/References:

[1]李阳,袁娜,刘大亮,等.绿豆Copia类反转座子全基因组注释及进化分析[J].江苏农业学报,2020,(04):858.[doi:doi:10.3969/j.issn.1000-4440.2020.04.008]
 LI Yang,YUAN Na,LIU Da-liang,et al.Annotation and evolutionary analysis of the Copia retrotransposons in mung bean[J].,2020,(05):858.[doi:doi:10.3969/j.issn.1000-4440.2020.04.008]
[2]李灵慧,吴然然,陈景斌,等.基于PARMS技术的绿豆抗叶斑病基因VrTAF5分子标记的开发[J].江苏农业学报,2021,(06):1386.[doi:doi:10.3969/j.issn.1000-4440.2021.05.004]
 LI Ling-hui,WU Ran-ran,CHEN Jing-bin,et al.Development of molecular markers of mung bean leaf spot disease resistance gene VrTAF5 based on PARMS technology[J].,2021,(05):1386.[doi:doi:10.3969/j.issn.1000-4440.2021.05.004]

备注/Memo

备注/Memo:
收稿日期:2022-02-24基金项目:国家重点研发计划项目(2020YFD1000800、2020YFD1000805);国家自然科学基金项目(31871696);国家现代农业产业技术体系-食用豆项目(CARS-08);江苏省自然科学基金项目(BK20200282);江苏高校优势学科建设工程项目(PAPD)作者简介:周旭旭(1996-),男,河南郑州人,硕士研究生,从事豆类作物分子育种研究。通讯作者:朱月林,(E-mail)ylzhu@njau.edu.cn;袁星星,(E-mail)yxx@jaas.ac.cn
更新日期/Last Update: 2022-11-07