[1]许慧,BUI Van Thang,范洪旺,等.城市和郊区麻栎林土壤有机碳组分及管理指数变化特征[J].江苏农业学报,2022,38(02):369-376.[doi:doi:10.3969/j.issn.1000-4440.2022.02.010]
 XU Hui,BUI Van Thang,FAN Hong-wang,et al.Variation characteristics of soil organic carbon composition and management index of Quercus acutissima forests in urban and suburban areas[J].,2022,38(02):369-376.[doi:doi:10.3969/j.issn.1000-4440.2022.02.010]
点击复制

城市和郊区麻栎林土壤有机碳组分及管理指数变化特征()
分享到:

江苏农业学报[ISSN:1006-6977/CN:61-1281/TN]

卷:
38
期数:
2022年02期
页码:
369-376
栏目:
耕作栽培·资源环境
出版日期:
2022-04-30

文章信息/Info

Title:
Variation characteristics of soil organic carbon composition and management index of Quercus acutissima forests in urban and suburban areas
作者:
许慧BUI Van Thang范洪旺许克福陶晓徐小牛
(安徽农业大学林学与园林学院,安徽合肥230036)
Author(s):
XU HuiBUI Van ThangFAN Hong-wangXU Ke-fuTAO XiaoXU Xiao-niu
(School of Forestry & Landscape Architecture, Anhui Agricultural University, Hefei 230036, China)
关键词:
城市化麻栎林土壤有机碳颗粒有机碳易氧化碳碳库管理指数
Keywords:
urbanizationQuercus acutissima forestsoil organic carbonparticulate organic carboneasily oxidized carboncarbon pool management index
分类号:
S714
DOI:
doi:10.3969/j.issn.1000-4440.2022.02.010
文献标志码:
A
摘要:
为了解城郊差异背景下森林土壤有机碳及其组分、碳库管理指数差异,揭示城郊差异对森林土壤活性有机碳含量及其稳定性的影响机制,于2017年7月至2018年3月对安徽省合肥市城市蜀山国家森林公园与郊区紫蓬山国家森林公园麻栎(Quercus acutissima)林土壤进行分季节采样,系统比较城市和郊区森林土壤总有机碳(SOC)含量及活性有机碳组分[易氧化碳(EOC)、颗粒有机碳(POC)]含量、全氮(TN)含量季节动态特征及碳库管理指数变化特征。结果显示,城区森林土壤SOC、TN、EOC、POC含量明显高于郊区森林土壤,且0~10 cm土层含量显著大于0~20 cm土层(P<0.05),在0~10 cm土层,城市森林土壤SOC、TN含量分别是郊区的1.67、1.45倍,10~20 cm土层城市森林土壤SOC、TN含量分别是郊区的1.95、1.68倍。EOC占SOC的比例表现为郊区大于城市,POC占SOC的比例表现为城市大于郊区;蜀山森林土壤EOC、POC含量有显著的季节变化(P<0.05),表现为夏季高,春秋低;土层深度及季节的交互作用对EOC、POC含量无显著影响;土壤TN、SOC和EOC、POC含量两两之间呈极显著(P<0.001)相关;与城市森林相比,郊区土壤碳氮比(C/N)较低;城市森林土壤碳库活度(A)低于郊区,土壤碳库指数(CPI)高于郊区。在本研究区域,城市森林土壤储存了较多的碳,碳库相对稳定,具有较强的固碳潜力。
Abstract:
To understand the differences of soil organic carbon and related components, carbon pool management indices of forests under different backgrounds of urban and suburban, and to reveal the influence of urban-suburban differences on the content and stability of soil active organic carbon in the forests, soil samples of Quercus acutissima forests were collected seasonally from July 2017 to March 2018 in Shushan National Forest Park (urban) and Zipengshan National Forest Park (suburban) in Hefei City of Anhui province. The seasonal dynamic characteristics of soil organic carbon (SOC) content and active organic carbon components containing easily oxidized carbon (EOC) and particulate organic carbon (POC) were systematically compared, and variation characteristics of total nitrogen (TN) content and carbon pool management index (CMI) between the two sites were also compared. The results showed that, contents of SOC, TN, EOC and POC in soils of urban forest were obviously higher than in suburban forest, and the contents in 0-10 cm soil layer were significantly higher than in 0-20 cm soil layer (P<0.05). In 0-10 cm soil layer, SOC and TN contents in urban forest soil were 1.67 times and 1.45 times of those in suburban forest soil respectively, while in 10-20 cm soil layer, SOC and TN contents were 1.95 times and 1.68 times of those in suburban forest soil respectively. The ratio of EOC to SOC was higher in suburban forest soil than in urban forest soil, and the ratio of POC to SOC was higher in urban forest soil than in suburb forest soil. The contents of EOC and POC showed significant seasonal variation in the soil of Shushan National Forest Park (P<0.05), which were higher in summer and lower in spring and autumn. The interaction of soil depth and season had no significant effect on EOC and POC contents. There existed extremely significant relationships between TN content, SOC content and EOC content, POC content (P<0.001). The ratio of C to N (C/N) in suburban forest soil was lower compared with that in urban forest soil. The activity of soil carbon pool (A) was lower in urban forest than in suburban forest, while the index of soil carbon pool (CPI) was higher in urban forest than in suburban forest. In the areas studied in the research, the soil of the urban forest can store more carbon, and its carbon pool is relatively stable, which shows strong carbon sequestration potential.

参考文献/References:

[1]周国逸,熊鑫. 土壤有机碳形成机制的探索历程[J]. 热带亚热带植物学报, 2019, 27(5): 481-490.
[2]KALISZ B, LACHACE A, GLAZEWSKI R, et al. Labile organic carbon fractions after amendment of sandy soil with municipal sewage sludge and compost[J]. Journal of Elementology, 2017, 22(3): 785-797.
[3]何伟,王会,韩飞,等. 长期施用有机肥显著提升潮土有机碳组分[J]. 土壤学报, 2020, 57(2): 425-434.
[4]杨丽韫,罗天祥,吴松涛.长白山原始阔叶红松林不同演替阶段地下生物量与碳、氮贮量的比较[J].应用生态学报, 2005, 16(7): 1195-1199.
[5]LEFROY R D B, BLAIR G J, STRONG W M. Changes in soil organic matter with cropping as measured by organic carbon fractions and 13C natural isotope abundance[J]. Plant and Soil, 1993, 155/156(1): 399-402.
[6]金宝石,闫鸿远,王维奇,等. 互花米草入侵下湿地土壤碳氮磷变化及化学计量学特征[J]. 应用生态学报, 2017, 28(5): 1541-1549.
[7]GUO Q, ZHU G, CHEN T, et al. Spatial variation and environmental assessment of soil organic carbon isotopes for tracing sources in a typical contaminated site[J]. Journal of Geochemical Exploration, 2017, 175:11-17.
[8]CARROLL R, REYNOLDS J K, WRIGHT I A. Geochemical signature of urbanisation in Blue Mountains upland swamps[J]. The Science of the Total Environment, 2020, 699:134393.1-134393.12.
[9]李虹,冯仲科,唐秀美,等. 区位因素对绿地降低热岛效应的影响[J]. 农业工程学报, 2016, 32(增刊2): 316-322.
[10]ZHAO Y G, ZHANG G L, ZEP H, et al. Establishing a spatial grouping base for surface soil properties along urban-rural gradient——A case study in Nanjing, China[J]. Catena, 2007, 69(1): 74-81.
[11]方文. 基于不同空间尺度的重庆都市圈城市森林生态网络与群落特征研究[D]. 重庆: 西南大学, 2020.
[12]MCDONNELL M J, PICKETT S T A. The study of ecosystem structure and function along urban-rural gradients: an unexploited opportunity for ecology[J]. Ecology,1990, 71(4): 1232-1237.
[13]张雪莹,陈小梅,危晖,等. 城市化对珠江三角洲存留常绿阔叶林土壤有机碳组分及其碳库管理指数的影响[J]. 水土保持学报, 2017, 31(4): 184-190.
[14]丁明军,王敏,张华. 南昌快速城市化过程对环境多介质有机碳含量的影响[J]. 环境科学学报, 2017, 37(6): 2307-2314.
[15]KOERNER B A, KLOPATEK J M. Carbon fluxes and nitrogen availability along an urban-rural gradient in a desert landscape[J]. Urban Ecosystems, 2010, 13(1): 1-21.
[16]谢天,侯鹰,陈卫平. 城市化对土壤生态环境的影响研究进展[J]. 生态学报, 2019, 39(4): 33-43.
[17]BLAIR G J, LEFROY R D B, LISLE L. Soil carbon fractions based on their degree of oxidation, and the development of a carbon management index for agricultural systems[J]. Australian Journal of Agricultural Research, 1995, 46(7): 1459-1466.
[18]FRANZLUEBBERS A J, ARSHAD M A. Particulate organic carbon content and potential mineralization as affected by tillage and texture[J]. Soil Science Society of America Journal, 1997, 61(5): 1382-1386.
[19]BLAIR G J, LEFROY R D B, LISLE L. Soil carbon fractions based on their degree of oxidation, and the development of a carbon management index for agricultural systems [J]. Australian Journal of Agricultural Research, 1995, 46(7): 1459-1466.
[20]张云云. 模拟气候变暖对高寒泥炭湿地碳稳定性的影响及机制研究[D]. 北京: 北京林业大学, 2019.
[21]GOMEZ E J, DELGADO J A, GONZALEZ J M. Environmental factors affect the response of microbial extracellular enzyme activity in soils when determined as a function of water availability and temperature[J]. Ecology and Evolution, 2020, 10(18):1-11.
[22]MUDGE P L, SCHIPPER L A, BAISDEN W T, et al. Changes in soil C, N and δ15N along three forest-pasture chronosequences in New Zealand[J]. Soil Research, 2014, 52(1): 27-37.
[23]程淑兰,方华军,徐梦,等. 氮沉降增加情景下植物-土壤-微生物交互对自然生态系统土壤有机碳的调控研究进展[J]. 生态学报, 2018, 38(23): 8285-8295.
[24]JANSSENS I A, DIELEMAN W, LUYSSAERT S. Reduction of forest soil respiration in response to nitrogen deposition[J]. Nature Geoscience, 2010, 3(5): 315-322.
[25]BLAGODATSKAYA E V, BLAGODATSKAY S A, ANDERSON T H, et al. Priming effects of Chernozem induced by glucose and N in relation to microbial growth strategies[J]. Applied Soil Ecology, 2007, 37(1/2): 95-105.
[26]谢国雄,楼旭平,阮弋飞,等. 浙江省农田土壤碳氮比特征及影响因素分析[J]. 江西农业学报, 2020, 32(2): 51-55.
[27]张哲,王邵军,李霁航,等. 土壤易氧化有机碳对西双版纳热带森林群落演替的响应[J]. 生态学报, 2019, 39(17): 6257-6263.
[28]牟凌,张丽,陈子豪,等. 四川盆地西缘4种人工林土壤有机碳组分特征[J].甘肃农业大学学报,2020,55(3):121-126,133.
[29]郝江勃,乔枫,蔡子良. 亚热带常绿阔叶林土壤活性有机碳组分季节动态特征[J]. 生态环境学报, 2019, 28(2): 245-251.
[30]魏强. 亚热带典型森林凋落物输入对土壤有机碳累积和稳定性影响[D]. 福州: 福建农林大学, 2018.
[31]马南,陈智文,张清.不同类型秸秆还田对土壤有机碳及酶活性的影响综述[J].江苏农业科学,2021,49(3):53-57.
[32]陈仕林,蒙炎成,胡钧铭,等. 秸秆覆盖对粉垄蔗田土壤有机碳及CO2排放的影响[J].南方农业学报,2021,52(2):307-316.
[33]POUYAT R, GROFFMAN P, YESILONIS I. Soil carbon pools and fluxes in urban ecosystems[J]. Environmental Pollution, 2002, 116: S107-S118.
[34]WALKER X J, MACK M C, JOHNSTONE J F. Stable carbon isotope analysis reveals widespread drought stress in boreal black spruce forests[J]. Global Change Biology, 2015, 21(8): 3102-3113.
[35]池鑫晨,宋超,朱向涛,等. 毛竹入侵常绿阔叶林对土壤活性有机碳氮的动态影响[J]. 生态学杂志, 2020, 39(7): 2263-2272.
[36]郑裕雄,曹际玲,杨智杰,等. 米槠天然林和桔园土壤微生物群落结构的季节性变化[J]. 生态环境学报, 2019, 28(10): 1991-1998.
[37]辜翔,张仕吉,项文化,等. 中亚热带4种森林类型土壤活性有机碳的季节动态特征[J]. 植物生态学报, 2016, 40(10): 1064-1076.
[38]XU X N, ENOKI T, HIRATA E, et al. Pattern and chemical composition of fine litterfall in a subtropical forest in northern Okinawa Island, Japan [J]. Basic and Applied Ecology, 2003, 4(3): 229-237.
[39]JING G, Bo W, GUIBIN W, et al. Vertical and seasonal variations of soil carbon pools in ginkgo agroforestry systems in eastern China[J]. Catena, 2018, 171: 450-459.
[40]TEWKSBURY C E, MIEGROET H V. Soil organic carbon dynamics along a climatic gradient in a southern Appalachian spruce-fir forest[J]. Canadian Journal of Forest Research, 2007, 37(7): 1161-1172.
[41]滕臻,曹小青,孙孟瑶,等. 不同生态恢复模式对巢湖湖滨湿地土壤活性碳库及其管理指数的影响[J]. 生态环境学报, 2019, 28(4): 752-760.
[42]闫丽娟,李广,吴江琪,等. 黄土高原4种典型植被对土壤活性有机碳及土壤碳库的影响[J]. 生态学报, 2019, 39(15): 5546-5554.
[43]陶晓,俞元春,张云彬,等. 城市森林土壤碳氮磷含量及其生态化学计量特征[J]. 生态环境学报, 2020, 29(1): 88-96.

备注/Memo

备注/Memo:
收稿日期:2021-03-29基金项目:国家自然科学基金项目(31700631、31070588)作者简介:许慧(1996-),女,安徽芜湖人,博士研究生,主要从事森林培育研究。(E-mail)1281178265@qq.com通讯作者:徐小牛,(E-mail)xnxu2007@ahau.edu.cn
更新日期/Last Update: 2022-05-07