[1]吴春发,关浩然,张锦路,等.含磷钝化剂对镉污染农田土壤酶活性的影响[J].江苏农业学报,2022,38(02):361-368.[doi:doi:10.3969/j.issn.1000-4440.2022.02.009]
 WU Chun-fa,GUAN Hao-ran,ZHANG Jin-lu,et al.Effects of phosphorus-containing passivators on enzyme activity in cadmium-contaminated agricultural soils[J].,2022,38(02):361-368.[doi:doi:10.3969/j.issn.1000-4440.2022.02.009]
点击复制

含磷钝化剂对镉污染农田土壤酶活性的影响()
分享到:

江苏农业学报[ISSN:1006-6977/CN:61-1281/TN]

卷:
38
期数:
2022年02期
页码:
361-368
栏目:
耕作栽培·资源环境
出版日期:
2022-04-30

文章信息/Info

Title:
Effects of phosphorus-containing passivators on enzyme activity in cadmium-contaminated agricultural soils
作者:
吴春发关浩然张锦路张宇
(南京信息工程大学应用气象学院,江苏南京210044)
Author(s):
WU Chun-faGUAN Hao-ranZHANG Jin-luZHANG Yu
(College of Applied Meteorology, Nanjing University of Information Science and Technology, Nanjing 210044, China)
关键词:
含磷钝化剂钝化修复镉污染土壤酶活性
Keywords:
phosphorus-containing passivatorspassivation remediationcadmium contaminationsoil enzyme activity
分类号:
X53
DOI:
doi:10.3969/j.issn.1000-4440.2022.02.009
文献标志码:
A
摘要:
土壤酶活性是表征土壤修复成效的重要指标,含磷钝化剂是镉污染农田土壤常用的一类钝化剂。因此,研究不同含磷钝化剂对镉污染农田土壤酶活性的影响具有重要意义。本研究选用羟基磷灰石(HAP)、磷酸二氢钙(MCP)和磷酸氢二钠(DSP)3种典型含磷钝化剂作为供试钝化剂,对镉污染农田土壤开展了为期3个月的室内钝化修复试验,并测定了镉化学形态、土壤基本理化性质以及土壤脲酶、酸性磷酸酶、过氧化氢酶、蔗糖酶的活性。结果表明,3种含磷钝化剂的添加不仅改变了土壤pH、阳离子交换量、总磷含量和有效磷含量,还促进了土壤可交换态镉向有机结合态镉和残渣态镉转化,降低了镉的活性。其中,HAP具有更好的钝化效果。HAP对脲酶活性有显著的促进作用,MCP对酸性磷酸酶活性和过氧化氢酶活性分别具有显著促进作用和抑制作用,DSP对脲酶和酸性磷酸酶的活性均有抑制作用。在所选土壤环境因子中,土壤pH和碳酸盐结合态镉含量这2个因子对供试土壤酶活性的影响相对较大。碳酸盐结合态镉含量与脲酶、蔗糖酶活性显著负相关,钝化处理可能通过降低碳酸盐结合态镉含量来提高脲酶、蔗糖酶活性;土壤pH与酸性磷酸酶活性极显著负相关,与过氧化氢酶活性极显著正相关,钝化处理可能主要通过降低(提高)pH来促进(抑制)土壤酸性磷酸酶活性,主要通过提高(降低)pH来促进(抑制)过氧化氢酶活性。从钝化效率和对土壤酶活性影响的角度综合考虑,HAP比MCP、DSP更适合用于轻度镉污染农田土壤的钝化修复。
Abstract:
Soil enzyme activity is an important indicator to characterize the effectiveness of soil remediation, and phosphorus (P)-containing passivators are commonly used in cadmium (Cd)-contaminated farmland soils. Therefore, it is of great significance to study the effects of P-containing passivators on enzyme activity in Cd-contaminated agricultural soils. Three typical P-containing passivators including hydroxyapatite (HAP), calcium dihydrogen phosphate (MCP) and disodium hydrogen phosphate (DSP) were chosen as passivators for Cd-contaminated agricultural soils in a three-month indoor incubation experiment. Soil enzymes (urease, acid phosphatase, catalase and sucrase) activities, chemical forms of Cd and some physicochemical properties were determined. The results indicated that the application of three passivators altered soil pH, cation exchange capacity (CEC), total P content and available P content, and promoted the transformation from exchangeable Cd (CdEx)to Cd bound to organic matter (CdOM) and residual Cd (CdRes), resulting in the decrease of availability of Cd. In addition, HAP had a better passivation effect than MCP and DSP. HAP significantly enhanced soil urease activity, and MCP significantly enhanced soil acid phosphatase activity and descended soil catalase activity, while soil urease and acid phosphatase activities were decreased by DSP. Two soil factors, soil pH and the content of Cd bound to carbonates (CdCar), had relatively greater effects than other factors on soil enzyme activities. The content of CdCar was significantly negatively correlated with the activities of soil urease and sucrase, and passivation treatment might improve urease and sucrase activities by reducing CdCar content. The stimulated activities of soil acid phosphatase and catalase were probably attributed to the decreased and elevated pH respectively, which had negative correlation with the former and positive correlation with the latter. Therefore, HAP is more suitable for slightly Cd-contaminated agricultural soils than MCP and DSP according to passivation efficiency and soil enzyme activity.

参考文献/References:

[1]ADAMS M L, ZHAO F J, MCGRATH S P, et al. Predicting cadmium concentrations in wheat and barley grain using soil properties[J]. Journal of Environmental Quality, 2004, 33(2): 532-541.
[2]BRUS D J, LI Z B, SONG J, et al. Predictions of spatially averaged cadmium contents in rice grains in the Fuyang valley, PR China[J]. Journal of Environmental Quality, 2009, 38(3): 1126-1136.
[3]TANG X, LI Q, WU M, et al. Review of remediation practices regarding cadmium-enriched farmland soil with particular reference to China[J]. Journal of Environmental Management, 2016, 181: 646-662.
[4]胡红青,黄益宗,黄巧云,等. 农田土壤重金属污染化学钝化修复研究进展[J]. 植物营养与肥料学报, 2017, 23(6): 1671-1685.
[5]刘梦丽,蒋明,李博,等. 农田土壤镉污染钝化修复研究进展[J]. 云南农业大学学报, 2018, 33(2): 350-359.
[6]张迪,丁爱芳. 组配钝化剂对镉铅复合污染土壤修复效果研究[J]. 农业环境科学学报, 2018, 37(12): 2718-2726.
[7]李剑睿,徐应明,林大松,等. 水分调控和钝化剂处理对水稻土镉的钝化效应及其机理[J]. 农业环境科学学报, 2014, 33(7): 1316-1321.
[8]丁淑芳,谢正苗,吴卫红,等. 含磷物质原位化学钝化重金属污染土壤的研究进展[J]. 安徽农业科学, 2012, 40(35): 17093-17097.
[9]CUI H B, ZHOU J, ZHAO Q G, et al. Fractions of Cu, Cd, and enzyme activities in a contaminated soil as affected by applications of micro- and nanohydroxyapatite[J]. Journal of Soils and Sediments, 2013, 13(4): 742-752.
[10]雷鸣,曾敏,胡立琼,等. 不同含磷物质对重金属污染土壤-水稻系统中重金属迁移的影响[J]. 环境科学学报, 2014, 34(6): 1527-1533.
[11]陈盾,王小兵,汪晓丽,等. 镉污染红壤的钝化剂筛选及钝化效果[J]. 生态与农村环境学报, 2020, 36(1): 115-120.
[12]CUI H B, YANG X, XU L, et al. Effects of goethite on the fractions of Cu, Cd, Pb, P and soil enzyme activity with hydroxyapatite in heavy metal-contaminated soil[J]. RSC Advances, 2017, 7(72): 45869-45877.
[13]付煜恒,张惠灵,王宇,等. 磷酸盐对铅镉复合污染土壤的钝化修复研究[J]. 环境工程, 2017, 35(9): 176-180.
[14]CAO X D, WAHBI A, MA L, et al. Immobilization of Zn, Cu, and Pb in contaminated soils using phosphate rock and phosphoric acid[J]. Journal of Hazardous Materials, 2009, 164(2): 555-564.
[15]李楠. 重金属形态与土壤酶活性关系研究[D]. 西安: 西安科技大学, 2015.
[16]杜志敏,郝建设,周静,等. 四种改良剂对铜和镉复合污染土壤的田间原位修复研究[J]. 土壤学报, 2012, 49(3): 508-517.
[17]陈芬,余高,谭杰斌,等. 生态有机型土壤改良剂对油菜生育期土壤酶活性的影响[J]. 浙江农业科学, 2020, 61(1): 32-33,36.
[18]王琪,张永波,贾亚敏,等.有机肥和生物炭对重金属污染农田土壤肥力的影响[J].江苏农业科学,2020,48(1):263-267.
[19]高晶霞,吴雪梅,牛勇琴,等. 辣根素水乳剂对连作辣椒生长及土壤酶活性的影响[J].江苏农业学报,2021,37(1):116-120.
[20]邱全敏,罗东林,罗乐洋,等. 施用土壤pH改良剂对弱碱性荔枝园土壤性质及荔枝生长的影响[J].南方农业学报,2020,51(7):1545-1552.
[21]BLASER P, ZIMMERMANN S, LUSTER J, et al. Critical examination of trace element enrichments and depletions in soils: As, Cr, Cu, Ni, Pb, and Zn in Swiss forest soils[J]. Science of the Total Environment, 2000, 249: 257-280.
[22]张咏梅,周国逸,吴宁. 土壤酶学的研究进展[J]. 热带亚热带植物学报, 2004,12 (1): 83-90.
[23]WU W C, WU J H, LIU X W, et al. Inorganic phosphorus fertilizer ameliorates maize growth by reducing metal uptake, improving soil enzyme activity and microbial community structure[J]. Ecotoxicology and Environmental Safety, 2017, 143: 322-329.
[24]陈彦芳,曹柳,马建华,等. 土壤重金属复合污染钝化修复对酶活性的影响[J].河南大学学报, 2020, 50(1): 1-10.
[25]孟庆峰,杨劲松,姚荣江,等. 单一及复合重金属污染对土壤酶活性的影响[J]. 生态环境学报, 2012, 21(3): 545-550.
[26]王巧红,董金霞,张君,等. Cd污染对3种类型土壤酶活性及Cd形态分布的影响[J].四川农业大学学报, 2017, 35(3): 339-344.
[27]LIU M H, CHE Y Y, WANG L Q, et al. Rice straw biochar and phosphorus inputs have more positive effects on the yield and nutrient uptake of lolium multiflorum than arbuscular mycorrhizal fungi in acidic Cd-contaminated soils[J]. Chemosphere, 2019, 235: 32-39.
[28]XU Y P, SCHWARTZ F W, TRAINA S J. Sorption of Zn2+ and Cd2+ on hydroxyapatite surfaces[J]. Environmental Science & Technology, 1994, 28(8): 1472-1480.
[29]HAMID Y, TANG L, LU M, et al. Assessing the immobilization efficiency of organic and inorganic amendments for cadmium phytoavailability to wheat[J]. Journal of Soils and Sediments, 2019, 19(11): 3708-3717.
[30]ZENG X X, XU H, LU J J, et al. The immobilization of soil cadmium by the combined amendment of bacteria and hydroxyapatite[J]. Scientific Reports, 2020, 10(1): 2189.
[31]LU A X, ZHANG S Z, SHAN X Q. Time effect on the fractionation of heavy metals in soils[J]. Geoderma, 2005, 125(3): 225-234.
[32]RAJAIE M, KARIMIAN N, MAFTOUN M, et al. Chemical forms of cadmium in two calcareous soil textural classes as affected by application of cadmium-enriched compost and incubation time[J]. Geoderma, 2006, 136(3): 533-541.
[33]WU C F, YANG S H, ZHANG H B, et al. Chemical forms of cadmium in a calcareous soil treated with different levels of phosphorus-containing acidifying agents[J]. Soil Research, 2015, 53(1): 105-111.
[34]鲍士旦. 土壤农化分析[M]. 北京: 中国农业出版社, 2000: 30-163.
[35]TESSIER A P, CAMPBELL P C, BISSON M X. Sequential extraction procedure for the speciation of particulate trace metals[J]. Analytical Chemistry, 1979, 51(7): 844-851.
[36]李振高,骆永明,滕应. 土壤与环境微生物研究法[M]. 北京: 科学出版社, 2008:155-166.
[37]崔雪梅,郭海如,李春生,等. 基于主成分分析的油菜幼苗铝毒机制研究[J]. 河南农业科学, 2016, 45(5): 52-55.
[38]刘弘禹,张玉杰,陈宁怡,等. 羟基磷灰石表面特性差异对重金属污染土壤固化修复的影响[J].环境化学,2018,37(9):1961-1970.
[39]SESHADRI B, BOLAN N S, WIJESEKARA H, et al. Phosphorus-cadmium interactions in paddy soils[J]. Geoderma, 2016, 270: 43-59.
[40]ZHU H, WU C F, WANG J, et al. The effect of simulated acid rain on the stabilization of cadmium in contaminated agricultural soils treated with stabilizing agents[J]. Environmental Science and Pollution Research, 2018, 25(18): 17499-17508.
[41]邢维芹,张纯青,周冬,等. 磷酸盐、石灰和膨润土降低冶炼厂污染石灰性土壤重金属活性的研究[J]. 土壤通报, 2019, 50(5): 1245-1252.
[42]吴求刚,王彦君,赵恒,等. 淹水条件下赤铁矿对羟基磷灰石钝化土壤铜镉的影响[J]. 生态与农村环境学报, 2020, 36(6): 796-802.
[43]崔红标,何静,吴求刚,等. 不同粒径羟基磷灰石对污染土壤铜镉磷有效性和酶活性的影响[J]. 环境科学研究, 2017, 30(7): 1146-1153.
[44]NAIDU R, KOOKANA R S, SUMNER M E, et al. Cadmium sorption and transport in variable charge soils: A review[J]. Journal of Environmental Quality, 1997, 26: 602-617.
[45]GRAY C W, MCLAREN R G, ROBERTS A C, et al. Sorption and desorption of cadmium from some New Zealand soils: effect of pH and contact time[J]. Soil Research, 1998, 36(2): 199-216.
[46]DICK W A, CHENG L, WANG P. Soil acid and alkaline phosphatase activity as pH adjustment indicators[J]. Soil Biology & Biochemistry, 2000, 32(13): 1915-1919.
[47]冯慧芳,余明,薛立. 外源性氮磷添加及林分密度对大叶相思林土壤酶活性的影响[J]. 生态学报, 2020, 40(14): 4894-4902.

相似文献/References:

[1]白珊,倪幸,杨瑗羽,等.不同原材料生物炭对土壤重金属Cd、Zn的钝化作用[J].江苏农业学报,2021,(05):1199.[doi:doi:10.3969/j.issn.1000-4440.2021.05.015]
 BAI Shan,NI Xing,YANG Yuan-yu,et al.Immobilization of soil cadmium and zinc by different raw material derived biochars[J].,2021,(02):1199.[doi:doi:10.3969/j.issn.1000-4440.2021.05.015]

备注/Memo

备注/Memo:
收稿日期:2021-06-06基金项目:国家级大学生创新训练计划项目(201910300039Z);国家重点研发计划项目(2019YFC1804704) 作者简介:吴春发(1978-),男,安徽池州人,博士,副研究员,主要从事环境污染与修复研究。(E-mail)wchf1680@sina.com
更新日期/Last Update: 2022-05-07