[1]周欣兴,王好让,王晨宇,等.多源表型信息融合下大豆品种(系)鉴定与系谱分析[J].江苏农业学报,2025,(04):644-655.[doi:doi:10.3969/j.issn.1000-4440.2025.04.003]
 ZHOU Xinxing,WANG Haorang,WANG Chenyu,et al.Multi-source phenotypic information fusion for soybean variety (line) identification and pedigree analysis[J].,2025,(04):644-655.[doi:doi:10.3969/j.issn.1000-4440.2025.04.003]
点击复制

多源表型信息融合下大豆品种(系)鉴定与系谱分析()
分享到:

江苏农业学报[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2025年04期
页码:
644-655
栏目:
遗传育种·生理生化
出版日期:
2025-04-30

文章信息/Info

Title:
Multi-source phenotypic information fusion for soybean variety (line) identification and pedigree analysis
作者:
周欣兴1王好让1王晨宇2徐泽俊1李剑1王幸1刘亚菊1
(1.江苏徐淮地区徐州农业科学研究所,江苏徐州221131;2.农业农村部科技发展中心,北京100176)
Author(s):
ZHOU Xinxing1WANG Haorang1WANG Chenyu2XU Zejun1LI Jian1WANG Xing1LIU Yaju1
(1.Xuzhou Institute of Agricultural Sciences of the Xuhuai District of Jiangsu Province, Xuzhou 221131, China;2.Development Center of Science and Technology, Ministry of Agriculture and Rural Affairs, Beijing 100176, China)
关键词:
大豆DUS测试性状品种(系)鉴定遥感图像处理
Keywords:
soybeanDUS testingtraitsvariety (line) identificationremote sensingimage processing
分类号:
TP391;S565.1
DOI:
doi:10.3969/j.issn.1000-4440.2025.04.003
文献标志码:
A
摘要:
特异性、一致性和稳定性(DUS)是大豆新品种审定和品种权授权的必备条件,也是大豆种质评价和品种鉴定的重要依据。为验证引入多源表型数据进行大豆品种(系)精准鉴定和系谱分析的可能性,本研究利用田间调查、低空遥感和计算机视觉技术获取大豆的22个DUS性状、16个冠层性状和23个豆荚图像性状,并通过随机森林分类(RFC)模型和支持向量分类(SVC)模型进行大豆品种(系)鉴定,采用K均值(K-means)聚类算法探究品种(系)间的系谱关系。研究发现,低空遥感与计算机视觉技术获取的各性状间具有较高的相关性,DUS性状对于大豆品种(系)的准确识别至关重要,但也存在一些性状对品种(系)鉴定的贡献较弱。冠层光谱性状和豆荚图像的部分形态、颜色和纹理性状可以作为大豆品种(系)鉴定的优异候选性状。引入多源表型性状后模型实例化鉴定结果得到一定程度的改善,2个模型分类精度最终均能保持在0.9以上。聚类分析结果显示,聚类数在4个及以下时轮廓系数较好。本研究结果表明,利用多源表型信息创新品种测试技术具有巨大潜力,可为今后大豆DUS测试、品种(系)鉴定及系谱研究提供新的方法。
Abstract:
Distinctness, uniformity and stability (DUS) are prerequisites for a new soybean variety to obtain approval or plant variety rights, and they are also important bases for soybean germplasm evaluation and variety identification. To verify the possibility of introducing multi-source phenotypic data for accurate identification and pedigree analysis of soybean varieties (lines), this study utilized field investigation, low-altitude remote sensing, and computer vision technologies to obtain 22 DUS traits, 16 canopy traits and 23 pod image traits. The soybean varieties (lines) were identified by random forest classification (RFC) model and support vector classification (SVC) model. K-means clustering algorithm was used to explore the pedigree relationship among varieties (lines). We found that there were high correlations between the traits acquired by low-altitude remote sensing and computer vision technologies. DUS traits were crucial for the accurate identification of soybean varieties (lines), but there were also some traits that contributed less to the identification of varieties (lines). Canopy spectral traits and partial morphological color, and textural traits of pod images could serve as excellent candidate traits for the identification of soybean varieties (lines). After incorporating multi-source phenotypic traits, the model instantiation identification results were improved to a certain extent, and the accuracy of the two models was ultimately maintained above 0.9. The cluster analysis results showed that the silhouette coefficient demonstrated relatively good performance when the number of clusters was four or fewer. This study demonstrates that innovating variety testing technologies through multi-source phenotypic information holds significant potential, providing new methods for future soybean DUS testing, variety (line) identification, and pedigree research.

参考文献/References:

[1]TESTER M, LANGRIDGE P. Breeding technologies to increase crop production in a changing world[J]. Science,2010,327(5967):818-822.
[2]BRESEGHELLO F, COELHO A S G. Traditional and modern plant breeding methods with examples in rice (Oryza sativa L.)[J]. Journal of Agricultural and Food Chemistry,2013,61(35):8277-8286.
[3]万志前,刘政,俞秦峰. 我国大豆新品种保护的现状分析与思考[J]. 江苏农业科学,2024,52(11):35-44.
[4]YADAV V K, SINGH I S. Comparative evaluation of maize inbred lines (Zea mays L.) according to dus testing using morphological,physiological and molecular markers[J]. Agricultural Sciences,2010,1(3):131-142.
[5]GUPTA A, MAHAJAN V, KHATI P, et al. Distinctness in Indian soybean (Glycine max) varieties using DUS characters[J]. Indian Journal of Agricultural Sciences,2012,80:1081-1084.
[6]王红娟,蒋晓英,官玲,等. 基于DUS测试性状的西南地区春大豆品种遗传多样性分析[J]. 大豆科学,2022,41(3):9.
[7]DENG L M, HAN Z Z. Image features and DUS testing traits for peanut pod variety identification and pedigree analysis[J]. Journal of the Science of Food and Agriculture,2019,99(5):2572-2578.
[8]汪勇. 基于图像识别技术对玉米种子品种识别探究[J]. 分子植物育种,2022,20(2):672-676.
[9]LOOTENS P, VAN W J, CARLIER L. Evaluation of the tepal colour of Begonia×tuberhybrida Voss. for DUS testing using image analysis [J]. Euphytica,2007,155:135-142.
[10]LOOTENS P, CHAVES B, BAERT J, et al. Comparison of image analysis and direct measurement of UPOV taxonomic characteristics for variety discrimination as determined over five growing seasons,using industrial chicory as a model crop[J]. Euphytica,2013,189(3):329-341.
[11]REHMAN T U, MAHMUD M S, CHANG Y K, et al. Current and future applications of statistical machine learning algorithms for agricultural machine vision systems[J]. Computers and Electronics in Agriculture,2019,156:585-605.
[12]LI R, WANG D L, ZHU B, et al. Estimation of nitrogen content in wheat using indices derived from RGB and thermal infrared imaging[J]. Field Crops Research,2022,289:108735.
[13]陈裕锋,冯佩雯,凌金生,等. 基于无人机多光谱图像的水稻品种鉴定[J]. 南京农业大学学报,2023,46(5):995-1003.
[14]GUO W, CARROLL M E, SINGH A, et al. UAS-based plant phenotyping for research and breeding applications[J]. Plant Phenomics,2021,2021(2):1-21.
[15]王金生,蒲国锋,马力,等. 大豆抗炸荚性高效评价方法研究[J]. 大豆科学,2022,41(5):564-568.
[16]BARBOSA M R J R, TEDESCO D, DOS SANTOS CARREIRA V, et al. The time of day is key to discriminate cultivars of sugarcane upon imagery data from unmanned aerial vehicle[J]. Drones,2022,6(5):112.
[17]BI C G, ZHANG S, CHEN H, et al. Non-destructive classification of maize seeds based on RGB and hyperspectral data with improved grey wolf optimization algorithms[J]. Agronomy,2024,14(4):645.
[18]宋少忠,刘园园,周紫阳,等. 基于高光谱图像技术的高粱品种识别研究[J]. 光谱学与光谱分析,2024,44(5):1392-1397.
[19]国家市场监督管理总局,中国国家标准化管理委员会. 植物品种特异性、一致性和稳定性测试指南大豆:GB/T 19557.4-2018[S]. 北京:中国标准出版社,2018.
[20]MAIMAITIJIANG M, SAGAN V, SIDIKE P, et al. Soybean yield prediction from UAV using multimodal data fusion and deep learning[J]. Remote Sensing of Environment,2020,237:111599.
[21]王晶晶,兰仕浩,邱琳,等. 基于哨兵二号的大豆、玉米遥感识别:以江苏徐淮地区为例[J]. 江苏农业学报,2023,39(8):1698-1706.
[22]李健,江洪,罗文彬,等. 融合无人机多光谱和纹理特征的马铃薯LAI估算[J]. 华南农业大学学报,2023,44(1):93-101.
[23]FONSECA DE OLIVEIRA G R, MASTRANGELO C B, HIRAI W Y, et al. An approach using emerging optical technologies and artificial intelligence brings new markers to evaluate peanut seed quality[J]. Frontiers in Plant Science,2022,13:849986.
[24]GUYON I, ELISSEEFF A. An introduction to variable and feature selection[J]. Journal of Machine Learning Research,2003,3:1157-1182.
[25]JEON H, OH S. Hybrid-recursive feature elimination for efficient feature selection[J]. Applied Sciences,2020,10(9):3211.
[26]HAM J, CHEN Y C, CRAWFORD M M, et al. Investigation of the random forest framework for classification of hyperspectral data[J]. IEEE Transactions on Geoscience and Remote Sensing,2005,43(3):492-501.
[27]LW F, MICHEL U, DECH S, et al. Impact of feature selection on the accuracy and spatial uncertainty of per-field crop classification using Support Vector Machines[J]. ISPRS Journal of Photogrammetry and Remote Sensing,2013,85:102-119.
[28]徐云碧,王冰冰,张健,等. 应用分子标记技术改进作物品种保护和监管[J]. 作物学报,2022,48(8):1853-1870.
[29]ZHOU X X, LI Y Y, SUN Y W, et al. Research on dynamic monitoring of grain filling process of winter wheat from time-series planet imageries[J]. Agronomy,2022,12(10):2451.
[30]张通,金秀,饶元,等. 基于无人机多光谱的大豆旗叶光合作用量子产量反演方法[J]. 农业工程学报,2022,38(13):150-157.
[31]狄佳春,孟珊,覃翠华,等. 江苏大豆地方种质资源表型多样性分析[J]. 植物遗传资源学报,2023,24(2):419-436.
[32]钟海丰,黄敏玲,钟淮钦,等. 中国农业植物新品种保护与DUS测试技术发展现状[J]. 热带作物学报,2017,38(6):8.

相似文献/References:

[1]刘朝茂,李成云.玉米与大豆间作对玉米叶片衰老的影响[J].江苏农业学报,2017,(02):322.[doi:doi:10.3969/j.issn.1000-4440.2017.02.013]
 LIU Chao-mao,LI Cheng-yun.Effects of maize/soybean intercropping on maize leaf senescence[J].,2017,(04):322.[doi:doi:10.3969/j.issn.1000-4440.2017.02.013]
[2]张令瑄,谢婷婷,王瑾,等.大田条件下UV-B 辐射增强对大豆根际土壤相关指标的影响[J].江苏农业学报,2016,(01):118.[doi:10.3969/j.issn.1000-4440.2016.01.018]
 ZHANG Ling-xuan,XIE Ting-ting,WANG Jin,et al.Soybean rhizosphere soil parameters in response to enhanced UV-B radiation under field condition[J].,2016,(04):118.[doi:10.3969/j.issn.1000-4440.2016.01.018]
[3]宁丽华,何晓兰,张大勇.大豆耐盐相关基因GmNcl1功能标记的开发及验证[J].江苏农业学报,2017,(06):1227.[doi:doi:10.3969/j.issn.1000-4440.2017.06.005]
 NING Li-hua,HE Xiao-lan,ZHANG Da-yong.Development and validation of the function marker of soybean salt tolerance gene GmNcl1[J].,2017,(04):1227.[doi:doi:10.3969/j.issn.1000-4440.2017.06.005]
[4]杨艳丽,杨勇,李大红,等.转桃PpCuZnSOD基因大豆的耐旱性[J].江苏农业学报,2018,(05):978.[doi:doi:10.3969/j.issn.1000-4440.2018.05.003]
 YANG Yan-li,YANG Yong,LI Da-hong,et al.Drought tolerance of transgenic soybean with PpCuZnSOD gene[J].,2018,(04):978.[doi:doi:10.3969/j.issn.1000-4440.2018.05.003]
[5]孙彦坤,陈睿,李静,等.不同降雨年型下反枝苋和大豆光合特征的比较[J].江苏农业学报,2019,(03):554.[doi:doi:10.3969/j.issn.1000-4440.2019.03.008]
 SUN Yan-kun,CHEN Rui,LI Jing,et al.Comparison of photosynthetic characteristics between Amaranthus retroexus and Glycine max under different annual rainfall pattern[J].,2019,(04):554.[doi:doi:10.3969/j.issn.1000-4440.2019.03.008]
[6]曹媛媛,陈春,郭婷婷,等.亲和性促生菌DW12-L的定殖及其对大豆生长的影响[J].江苏农业学报,2019,(04):776.[doi:doi:10.3969/j.issn.1000-4440.2019.04.004]
 CAO Yuan yuan,CHEN Chun,GUO Ting ting,et al.Colonization of soybean affinity rhizobacteria strain DW12-L and its effects on soybean growth[J].,2019,(04):776.[doi:doi:10.3969/j.issn.1000-4440.2019.04.004]
[7]丁俊男,于少鹏,李鑫,等.生物炭对大豆生理指标和农艺性状的影响[J].江苏农业学报,2019,(04):784.[doi:doi:10.3969/j.issn.1000-4440.2019.04.005]
 DING Jun nan,YU Shao peng,LI Xin,et al.Effects of biochar application on soybean physiological indices and agronomic traits[J].,2019,(04):784.[doi:doi:10.3969/j.issn.1000-4440.2019.04.005]
[8]曹帅,杜仲阳,刘鹏,等.碱胁迫对大豆光合特性及内源激素含量的影响[J].江苏农业学报,2020,(02):284.[doi:doi:10.3969/j.issn.1000-4440.2020.02.005]
 CAO Shuai,DU Zhong-yang,LIU Peng,et al.Effects of alkaline stress on photosynthetic characteristics and endogenous hormone contents of soybean[J].,2020,(04):284.[doi:doi:10.3969/j.issn.1000-4440.2020.02.005]
[9]邱爽,张军,何佳琦,等.大豆GmGolS2-1基因高温胁迫诱导表达及转基因烟草鉴定[J].江苏农业学报,2021,(01):38.[doi:doi:10.3969/j.issn.1000-4440.2021.01.005]
 QIU Shuang,ZHANG Jun,HE Jia-qi,et al.Expression of soybean GmGolS2-1 induced by heat stress and identification of GmGolS2-1 transgenic tobacco[J].,2021,(04):38.[doi:doi:10.3969/j.issn.1000-4440.2021.01.005]
[10]张斌,陈丽娟,李其华,等.栽培大豆GRAS转录因子家族基因鉴定及其盐胁迫下表达模式分析[J].江苏农业学报,2021,(02):296.[doi:doi:10.3969/j.issn.1000-4440.2021.02.004]
 ZHANG Bin,CHEN Li-juan,LI Qi-hua,et al.Identification of gene of GRAS transcription factor family in cultivated soybean(Glycine max L.) and expression pattern analysis under salt stress[J].,2021,(04):296.[doi:doi:10.3969/j.issn.1000-4440.2021.02.004]

备注/Memo

备注/Memo:
收稿日期:2024-08-29基金项目:江苏省种业振兴“揭榜挂帅”项目 [JBGS(2021)057]作者简介:周欣兴(1996-),男,安徽铜陵人,硕士,助理研究员,主要从事农业植物新品种测试和农业信息技术研究。(E-mail)20211012@jaas.ac.cn通讯作者:刘亚菊,(E-mail)yajuliu@jaas.ac.cn
更新日期/Last Update: 2025-05-26