参考文献/References:
[1]TESTER M, LANGRIDGE P. Breeding technologies to increase crop production in a changing world[J]. Science,2010,327(5967):818-822.
[2]BRESEGHELLO F, COELHO A S G. Traditional and modern plant breeding methods with examples in rice (Oryza sativa L.)[J]. Journal of Agricultural and Food Chemistry,2013,61(35):8277-8286.
[3]万志前,刘政,俞秦峰. 我国大豆新品种保护的现状分析与思考[J]. 江苏农业科学,2024,52(11):35-44.
[4]YADAV V K, SINGH I S. Comparative evaluation of maize inbred lines (Zea mays L.) according to dus testing using morphological,physiological and molecular markers[J]. Agricultural Sciences,2010,1(3):131-142.
[5]GUPTA A, MAHAJAN V, KHATI P, et al. Distinctness in Indian soybean (Glycine max) varieties using DUS characters[J]. Indian Journal of Agricultural Sciences,2012,80:1081-1084.
[6]王红娟,蒋晓英,官玲,等. 基于DUS测试性状的西南地区春大豆品种遗传多样性分析[J]. 大豆科学,2022,41(3):9.
[7]DENG L M, HAN Z Z. Image features and DUS testing traits for peanut pod variety identification and pedigree analysis[J]. Journal of the Science of Food and Agriculture,2019,99(5):2572-2578.
[8]汪勇. 基于图像识别技术对玉米种子品种识别探究[J]. 分子植物育种,2022,20(2):672-676.
[9]LOOTENS P, VAN W J, CARLIER L. Evaluation of the tepal colour of Begonia×tuberhybrida Voss. for DUS testing using image analysis [J]. Euphytica,2007,155:135-142.
[10]LOOTENS P, CHAVES B, BAERT J, et al. Comparison of image analysis and direct measurement of UPOV taxonomic characteristics for variety discrimination as determined over five growing seasons,using industrial chicory as a model crop[J]. Euphytica,2013,189(3):329-341.
[11]REHMAN T U, MAHMUD M S, CHANG Y K, et al. Current and future applications of statistical machine learning algorithms for agricultural machine vision systems[J]. Computers and Electronics in Agriculture,2019,156:585-605.
[12]LI R, WANG D L, ZHU B, et al. Estimation of nitrogen content in wheat using indices derived from RGB and thermal infrared imaging[J]. Field Crops Research,2022,289:108735.
[13]陈裕锋,冯佩雯,凌金生,等. 基于无人机多光谱图像的水稻品种鉴定[J]. 南京农业大学学报,2023,46(5):995-1003.
[14]GUO W, CARROLL M E, SINGH A, et al. UAS-based plant phenotyping for research and breeding applications[J]. Plant Phenomics,2021,2021(2):1-21.
[15]王金生,蒲国锋,马力,等. 大豆抗炸荚性高效评价方法研究[J]. 大豆科学,2022,41(5):564-568.
[16]BARBOSA M R J R, TEDESCO D, DOS SANTOS CARREIRA V, et al. The time of day is key to discriminate cultivars of sugarcane upon imagery data from unmanned aerial vehicle[J]. Drones,2022,6(5):112.
[17]BI C G, ZHANG S, CHEN H, et al. Non-destructive classification of maize seeds based on RGB and hyperspectral data with improved grey wolf optimization algorithms[J]. Agronomy,2024,14(4):645.
[18]宋少忠,刘园园,周紫阳,等. 基于高光谱图像技术的高粱品种识别研究[J]. 光谱学与光谱分析,2024,44(5):1392-1397.
[19]国家市场监督管理总局,中国国家标准化管理委员会. 植物品种特异性、一致性和稳定性测试指南大豆:GB/T 19557.4-2018[S]. 北京:中国标准出版社,2018.
[20]MAIMAITIJIANG M, SAGAN V, SIDIKE P, et al. Soybean yield prediction from UAV using multimodal data fusion and deep learning[J]. Remote Sensing of Environment,2020,237:111599.
[21]王晶晶,兰仕浩,邱琳,等. 基于哨兵二号的大豆、玉米遥感识别:以江苏徐淮地区为例[J]. 江苏农业学报,2023,39(8):1698-1706.
[22]李健,江洪,罗文彬,等. 融合无人机多光谱和纹理特征的马铃薯LAI估算[J]. 华南农业大学学报,2023,44(1):93-101.
[23]FONSECA DE OLIVEIRA G R, MASTRANGELO C B, HIRAI W Y, et al. An approach using emerging optical technologies and artificial intelligence brings new markers to evaluate peanut seed quality[J]. Frontiers in Plant Science,2022,13:849986.
[24]GUYON I, ELISSEEFF A. An introduction to variable and feature selection[J]. Journal of Machine Learning Research,2003,3:1157-1182.
[25]JEON H, OH S. Hybrid-recursive feature elimination for efficient feature selection[J]. Applied Sciences,2020,10(9):3211.
[26]HAM J, CHEN Y C, CRAWFORD M M, et al. Investigation of the random forest framework for classification of hyperspectral data[J]. IEEE Transactions on Geoscience and Remote Sensing,2005,43(3):492-501.
[27]LW F, MICHEL U, DECH S, et al. Impact of feature selection on the accuracy and spatial uncertainty of per-field crop classification using Support Vector Machines[J]. ISPRS Journal of Photogrammetry and Remote Sensing,2013,85:102-119.
[28]徐云碧,王冰冰,张健,等. 应用分子标记技术改进作物品种保护和监管[J]. 作物学报,2022,48(8):1853-1870.
[29]ZHOU X X, LI Y Y, SUN Y W, et al. Research on dynamic monitoring of grain filling process of winter wheat from time-series planet imageries[J]. Agronomy,2022,12(10):2451.
[30]张通,金秀,饶元,等. 基于无人机多光谱的大豆旗叶光合作用量子产量反演方法[J]. 农业工程学报,2022,38(13):150-157.
[31]狄佳春,孟珊,覃翠华,等. 江苏大豆地方种质资源表型多样性分析[J]. 植物遗传资源学报,2023,24(2):419-436.
[32]钟海丰,黄敏玲,钟淮钦,等. 中国农业植物新品种保护与DUS测试技术发展现状[J]. 热带作物学报,2017,38(6):8.
相似文献/References:
[1]刘朝茂,李成云.玉米与大豆间作对玉米叶片衰老的影响[J].江苏农业学报,2017,(02):322.[doi:doi:10.3969/j.issn.1000-4440.2017.02.013]
LIU Chao-mao,LI Cheng-yun.Effects of maize/soybean intercropping on maize leaf senescence[J].,2017,(04):322.[doi:doi:10.3969/j.issn.1000-4440.2017.02.013]
[2]张令瑄,谢婷婷,王瑾,等.大田条件下UV-B 辐射增强对大豆根际土壤相关指标的影响[J].江苏农业学报,2016,(01):118.[doi:10.3969/j.issn.1000-4440.2016.01.018]
ZHANG Ling-xuan,XIE Ting-ting,WANG Jin,et al.Soybean rhizosphere soil parameters in response to enhanced UV-B radiation under field condition[J].,2016,(04):118.[doi:10.3969/j.issn.1000-4440.2016.01.018]
[3]宁丽华,何晓兰,张大勇.大豆耐盐相关基因GmNcl1功能标记的开发及验证[J].江苏农业学报,2017,(06):1227.[doi:doi:10.3969/j.issn.1000-4440.2017.06.005]
NING Li-hua,HE Xiao-lan,ZHANG Da-yong.Development and validation of the function marker of soybean salt tolerance gene GmNcl1[J].,2017,(04):1227.[doi:doi:10.3969/j.issn.1000-4440.2017.06.005]
[4]杨艳丽,杨勇,李大红,等.转桃PpCuZnSOD基因大豆的耐旱性[J].江苏农业学报,2018,(05):978.[doi:doi:10.3969/j.issn.1000-4440.2018.05.003]
YANG Yan-li,YANG Yong,LI Da-hong,et al.Drought tolerance of transgenic soybean with PpCuZnSOD gene[J].,2018,(04):978.[doi:doi:10.3969/j.issn.1000-4440.2018.05.003]
[5]孙彦坤,陈睿,李静,等.不同降雨年型下反枝苋和大豆光合特征的比较[J].江苏农业学报,2019,(03):554.[doi:doi:10.3969/j.issn.1000-4440.2019.03.008]
SUN Yan-kun,CHEN Rui,LI Jing,et al.Comparison of photosynthetic characteristics between Amaranthus retroexus and Glycine max under different annual rainfall pattern[J].,2019,(04):554.[doi:doi:10.3969/j.issn.1000-4440.2019.03.008]
[6]曹媛媛,陈春,郭婷婷,等.亲和性促生菌DW12-L的定殖及其对大豆生长的影响[J].江苏农业学报,2019,(04):776.[doi:doi:10.3969/j.issn.1000-4440.2019.04.004]
CAO Yuan yuan,CHEN Chun,GUO Ting ting,et al.Colonization of soybean affinity rhizobacteria strain DW12-L and its effects on soybean growth[J].,2019,(04):776.[doi:doi:10.3969/j.issn.1000-4440.2019.04.004]
[7]丁俊男,于少鹏,李鑫,等.生物炭对大豆生理指标和农艺性状的影响[J].江苏农业学报,2019,(04):784.[doi:doi:10.3969/j.issn.1000-4440.2019.04.005]
DING Jun nan,YU Shao peng,LI Xin,et al.Effects of biochar application on soybean physiological indices and agronomic traits[J].,2019,(04):784.[doi:doi:10.3969/j.issn.1000-4440.2019.04.005]
[8]曹帅,杜仲阳,刘鹏,等.碱胁迫对大豆光合特性及内源激素含量的影响[J].江苏农业学报,2020,(02):284.[doi:doi:10.3969/j.issn.1000-4440.2020.02.005]
CAO Shuai,DU Zhong-yang,LIU Peng,et al.Effects of alkaline stress on photosynthetic characteristics and endogenous hormone contents of soybean[J].,2020,(04):284.[doi:doi:10.3969/j.issn.1000-4440.2020.02.005]
[9]邱爽,张军,何佳琦,等.大豆GmGolS2-1基因高温胁迫诱导表达及转基因烟草鉴定[J].江苏农业学报,2021,(01):38.[doi:doi:10.3969/j.issn.1000-4440.2021.01.005]
QIU Shuang,ZHANG Jun,HE Jia-qi,et al.Expression of soybean GmGolS2-1 induced by heat stress and identification of GmGolS2-1 transgenic tobacco[J].,2021,(04):38.[doi:doi:10.3969/j.issn.1000-4440.2021.01.005]
[10]张斌,陈丽娟,李其华,等.栽培大豆GRAS转录因子家族基因鉴定及其盐胁迫下表达模式分析[J].江苏农业学报,2021,(02):296.[doi:doi:10.3969/j.issn.1000-4440.2021.02.004]
ZHANG Bin,CHEN Li-juan,LI Qi-hua,et al.Identification of gene of GRAS transcription factor family in cultivated soybean(Glycine max L.) and expression pattern analysis under salt stress[J].,2021,(04):296.[doi:doi:10.3969/j.issn.1000-4440.2021.02.004]