参考文献/References:
[1]LI J G, PU L J, HAN M F, et al. S oil salinization research in China:advances and prospects[J]. Journal of Geographical Sciences,2014,24(5):943-960.
[2]SHAHID S A, ABDELFATTAH M A, TAHA F K. Developments in soil salinity assessment and reciamation:innovative thinking and use of marginal soil and water resources in irrigated agriculture[M]. New York,London:Springer,2013.
[3]SHRIVASTAVA P, KUMAR R. Soil salinity:a serious environmental issue and plant growth promoting bacteria as one of the tools for its alleviation[J]. Saudi Journal of Biological Sciences,2015,22(2):123-131.
[4]QIU F, YAN Y J, ZENG J L, et al. Biochemical and metabolic insights into hyoscyamine dehydrogenase[J]. ACS Catalysis,2021,11(5):2912-2924.
[5]权赫根. 曼陀罗生物学特性研究[D]. 延吉:延边大学,2022.
[6]YANG B Y, ZHOU Y Q, LIU Y, et al. Withanolides as potential immunosuppressive agents against RAW264.7 cells from the pericarps of datura metel[J]. Natural Product Communications,2017,12(7):1021-1024.
[7]DHIMAN A, LA R, BHAN M, et al. Plebeian assessment of antimicrobial and in vitro antioxidant zest of Datura fastuosa L. seeds[J]. Journal of Pharmaceutical and Scientific Innovation,2012,1(4):49-53.
[8]HAN C, WANG L Y, LYU J Y, et al. Brassinosteroid signaling and molecular crosstalk with nutrients in plants[J]. Journal of Genetics and Genomics,2023,50(8):541-553.
[9]PLANAS-RIVEROLA A, GUPTA A, BETEGN-PUTZE I, et al. Brassinosteroid signaling in plant development and adaptation to stress[J]. Development,2019,146(5):151894.
[10]NAWAZ F, NAEEM M, ZULFIQAR B, et al. Understanding brassinosteroid-regulated mechanisms to improve stress tolerance in plants:a critical review[J]. Environmental Science and Pollution Research,2017,24(19):15959-15975.
[11]YUE J M, FU Z, ZHANG L, et al. The positive effect of different 24-epiBL pretreatments on salinity tolerance in Robinia pseudoacacia L. seedlings[J]. Forests,2018,10(1):4.
[12]范翠枝,吴馨怡,关欣,等. 油菜素内酯浸种对盐胁迫番茄种子萌发的影响及其生理机制[J]. 生态学报,2021,41(5):1857-1867.
[13]王丹,刘亚西,周扬,等. 油菜素内酯对盐胁迫下黑麦草种子萌发及幼苗生长的生理调控作用[J]. 草业科学,2021,38(6):1110-1118.
[14]王舒甜,王金平,张金池,等. 油菜素内酯对盐胁迫下香樟幼苗叶片抗氧化酶活性的影响[J]. 浙江大学学报(农业与生命科学版),2017,43(4):476-482.
[15]李志萍,张文辉,崔豫川. NaCl和N2CO3胁迫对栓皮栎种子萌发及幼苗生长的影响[J]. 生态学报,2015,35(3):742-751.
[16]王学奎. 植物生理生化实验原理和技术[M]. 4版. 北京:高等教育出版社,2006.
[17]宿梅飞,魏小红,辛夏青,等. 外源cGMP调控盐胁迫下黑麦草种子萌发机制[J]. 生态学报,2018,38(17):6171-6179.
[18]LARR C F, DE MORAES D M, LOPES N F. Qualidade fisiolóbgica de sementes de arroz tratadas com solucǎo salina e 24-epibrassinolfdeo[J]. Revista Brasileira de Sementes,2011,33(1):86-94.
[19]TONG H N, CHU C C. Functional specificities of brassinosteroid and potential utilization for crop improvement[J]. Trends in Plant Sci,2018,23(11):1016-1028.
[20]HU Y X, BAO F, LI J Y. Promotive effect of brassinosteroids on cell division involves a distinct CycD3-induction pathway in Arabidopsis[J]. Plant Journal for Cell & Molecular Biology,2010,24(5):693-701.
[21]权梦萍,徐佳慧,尹佳茗,等. 油菜素内酯调控植物响应非生物逆境胁迫的生理机制[J]. 植物保护学报,2023,50(1):22-31.
[22]白明义,彭金荣,傅向东. 赤霉素和油菜素内酯信号通路双重调控助力小麦新一轮“绿色革命”[J]. 植物学报,2023,58(2):194-198.
[23]岳健敏. 24-表油菜素内酯(24-epiBL)对刺槐、香樟幼苗耐盐性的影响[D]. 南京:南京林业大学,2019.
[24]AZHAR N, SU N, SHABALA L, et al. Exogenously applied 24-epibrassinolide (EBL) ameliorates detrimental effects of salinity by reducing K+ efflux via depolarization-activated K+ channels[J]. Plant and Cell Physiology,2017,58(4):802-810.
[25]SU Q F, ZHENG X D, TIAN Y K, et al. Exogenous brassinolide alleviates salt stress in Malus hupehensis Rehd. by regulating the transcription of NHX-type Na+(K+ )/H+ antiporters[J]. Frontiers in Plant Science,2020,11(11):38.
[26]魏茜,何敏,胡小京. 外源油菜素内酯对盐胁迫下紫罗兰幼苗生长及生理特性的影响[J]. 西南农业学报,2023,36(6):1165-1171.
[27]侯汶君,麻冬梅,张玲,等. 叶面喷施表油菜素内酯对湖南稷子耐盐性的调控作用[J]. 西北植物学报,2024,44(4):517-528.
[28]李明,颉嘉丽,石铭福,等. 外源2,4-表油菜素内酯对碱性盐胁迫下马铃薯根系生长、生理特性及土壤酶活性的影响[J]. 江苏农业学报,2024,40(3):394-402.
相似文献/References:
[1]韩金龙,李慧,蔺经,等.核黄素对盐胁迫下杜梨叶片抗氧化系统的影响[J].江苏农业学报,2015,(04):893.[doi:10.3969/j.issn.1000-4440.2015.04.029]
HAN Jing-long,LI Hui,LIN Jing,et al.The regulatory role of riboflavin in antioxidant system of Pyrus betulaefolia in response to salt tolerance[J].,2015,(02):893.[doi:10.3969/j.issn.1000-4440.2015.04.029]
[2]安飞飞,简纯平,杨龙,等.木薯幼苗叶绿素含量及光合特性对盐胁迫的响应[J].江苏农业学报,2015,(03):500.[doi:10.3969/j.issn.1000-4440.2015.03.006]
AN Fei-fei,JIAN Chun-ping,YANG Long,et al.Chlorophyll contents and photosynthetic characteristics of cassava seedlings in response to NaCl stress[J].,2015,(02):500.[doi:10.3969/j.issn.1000-4440.2015.03.006]
[3]管莉,张阿英.CaM 与 ZmCCaMK 相互作用参与 BR 诱导的玉米叶片抗氧化防护[J].江苏农业学报,2015,(01):10.[doi:10.3969/j.issn.1000-4440.2015.01.002]
GUAN Li,ZHANG A-ying.CaM-ZmCCaMK interaction involved in brassinosteroid-induced antioxidant defense in leaves of maize[J].,2015,(02):10.[doi:10.3969/j.issn.1000-4440.2015.01.002]
[4]刘金龙,辛寒晓,范学明,等.盐胁迫下鱼蛋白多肽对樱桃番茄种子发芽特性的影响[J].江苏农业学报,2017,(03):662.[doi:doi:10.3969/j.issn.1000-4440.2017.03.026]
LIU Jin-long,XIN Han-xiao,FAN Xue-ming,et al.Effects of fish protein polypeptide on salt-stressed cherry tomato seed germination[J].,2017,(02):662.[doi:doi:10.3969/j.issn.1000-4440.2017.03.026]
[5]田礼欣,李丽杰,刘旋,等.外源海藻糖对盐胁迫下玉米幼苗根系生长及生理特性的影响[J].江苏农业学报,2017,(04):754.[doi:doi:10.3969/j.issn.1000-4440.2017.04.005]
TIAN Li-xin,LI Li-jie,LIU Xuan,et al.Root growth and physiological characteristics of salt-stressed maize seedlings in response to exogenous trehalose[J].,2017,(02):754.[doi:doi:10.3969/j.issn.1000-4440.2017.04.005]
[6]黄芳,徐珍珍,孟珊,等.盐胁迫下棉花LTR-反转座子的转录激活及在耐盐相关基因发掘中的应用[J].江苏农业学报,2017,(06):1220.[doi:doi:10.3969/j.issn.1000-4440.2017.06.004]
HUANG Fang,XU Zhen-zhen,MENG Shan,et al.The identification of long terminal repeat retrotransposons (LTR-RTs) with transcription activity under salt stress and its application in screening the candidate genes related to salt-tolerant in cotton[J].,2017,(02):1220.[doi:doi:10.3969/j.issn.1000-4440.2017.06.004]
[7]王旭明,赵夏夏,陈景阳,等.盐胁迫下水稻孕穗期SS和SPS活性与糖积累的响应及其相关性分析[J].江苏农业学报,2018,(03):481.[doi:doi:10.3969/j.issn.1000-4440.2018.03.001]
WANG Xu-ming,ZHAO Xia-xia,CHEN Jing-yang,et al.The response and correlations between carbohydrate accumulation and activities of SPS, SS at booting stage of rice under salt stress[J].,2018,(02):481.[doi:doi:10.3969/j.issn.1000-4440.2018.03.001]
[8]刘丹,梁丹,王建贺,等.小麦TaBES1/BZR1基因的克隆及其在祖先种和六倍体小麦中的序列比较[J].江苏农业学报,2019,(01):238.[doi:doi:10.3969/j.issn.1000-4440.2019.01.034]
LIU Dan,LIANG Dan,WANG Jian-he,et al.Cloning and sequences analysis of TaBES1/BZR1 in ancestors and hexaploid wheat[J].,2019,(02):238.[doi:doi:10.3969/j.issn.1000-4440.2019.01.034]
[9]李敏,郭聪,李玉娟,等.旱柳转录组测序及生物学分析[J].江苏农业学报,2019,(02):271.[doi:doi:10.3969/j.issn.1000-4440.2019.02.005]
LI Min,GUO Cong,LI Yu-juan,et al.Transcriptome sequencing and biological analysis of willow (Salix matsudana)[J].,2019,(02):271.[doi:doi:10.3969/j.issn.1000-4440.2019.02.005]
[10]束晓春,李乃伟,汤兴利,等.NaCl处理对不同珊瑚菜种源光合生理和药用有效成分的影响[J].江苏农业学报,2019,(04):790.[doi:doi:10.3969/j.issn.1000-4440.2019.04.006]
SHU Xiao chun,LI Nai wei,TANG Xing li,et al.Effects of NaCl stress on photosynthetic physiology and active component of different Glehnia littoralis provenance[J].,2019,(02):790.[doi:doi:10.3969/j.issn.1000-4440.2019.04.006]