[1]艾伟伟,林珊,张月,等.高含量CO2对不同品种小麦光合性能的影响[J].江苏农业学报,2025,(02):231-241.[doi:doi:10.3969/j.issn.1000-4440.2025.02.003]
 AI Weiwei,LIN Shan,ZHANG Yue,et al.Effects of high CO2 concentration on photosynthetic performance of different wheat cultivars[J].,2025,(02):231-241.[doi:doi:10.3969/j.issn.1000-4440.2025.02.003]
点击复制

高含量CO2对不同品种小麦光合性能的影响()
分享到:

江苏农业学报[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2025年02期
页码:
231-241
栏目:
遗传育种·生理生化
出版日期:
2025-02-28

文章信息/Info

Title:
Effects of high CO2 concentration on photosynthetic performance of different wheat cultivars
作者:
艾伟伟林珊张月吴一超杨在君魏淑红
(西华师范大学生命科学学院,四川南充637000)
Author(s):
AI WeiweiLIN ShanZHANG YueWU YichaoYANG ZaijunWEI Shuhong
(College of Life Science, China West Normal University, Nanchong 637000, China)
关键词:
小麦CO2光合作用叶绿素相对含量叶绿素荧光
Keywords:
wheatCO2photosynthesisrelative chlorophyll content (SPAD)chlorophyll fluorescence
分类号:
Q945.11;S512.1
DOI:
doi:10.3969/j.issn.1000-4440.2025.02.003
文献标志码:
A
摘要:
以内麦9、川麦44和中国春为试验材料,以高含量(约900 μmol/mol) CO2为处理,环境含量(约410 μmol/mol)CO2为对照,测定叶片光合参数、叶绿素相对含量(SPAD)、叶绿素荧光参数,探讨不同品种小麦对CO2含量升高的响应。结果显示,高含量CO2条件下,3个品种小麦的净光合速率(Pn)、胞间CO2含量(Ci)和水分利用率(WUE)总体增加,气孔导度(Gs)、蒸腾速率(Tr)总体下降;不同小麦品种的SPAD对高含量CO2响应不同,抽穗期川麦44、内麦9的SPAD低于对照,抽穗期和灌浆期中国春的SPAD高于对照;3个小麦品种的最大光化学效率(Fv/Fm)总体呈现下降趋势,但均保持在0.750以上,仍然在健康生理状态范围内;中国春在拔节期和抽穗期出现K-波段与L-波段,川麦44在拔节期、抽穗期、灌浆期出现K-波段与L-波段,内麦9在拔节期、灌浆期出现K-波段与L-波段,内麦9在抽穗期只出现K-波段,说明光系统Ⅱ(PSⅡ)供体侧受损,中国春在灌浆期没有出现K-波段与L-波段,光反应得以正常进行。中国春单位活性反应中心吸收的能量通量(ABS/RC)在灌浆期显著低于对照,川麦44 ABS/RC、单位活性反应中心捕获的能量通量(TRo/RC)和单位活性反应中心耗散的总能量(DIo/RC)在抽穗期显著高于对照,内麦9 ABS/RC、TRo/RC在拔节期与灌浆期以及单位活性反应中心传递的电子通量(ETo/RC)、DIo/RC在灌浆期均显著高于对照。综上所述,在900 μmol/mol的CO2含量下,3个小麦品种的CO2“施肥效应”依然显著。中国春对高含量CO2耐受性相对较强,而川麦44和内麦9对高含量CO2较敏感。3个小麦品种为了保护叶片免受光氧化损伤,将吸收的多余光能转化为热,以减少光抑制作用,从而保证在高含量CO2条件下的能量供应,并促进小麦光合作用的进行。
Abstract:
To investigate the response of different wheat cultivars to elevated atmospheric CO2 concentration, Chinese Spring, Chuanmai 44 and Neimai 9 were used as materials. The photosynthetic parameters, relative chlorophyll content (SPAD), chlorophyll fluorescence parameters were determined with high CO2 concentration (about 900 μmol/mol) as treatment and ambient CO2 concentration (about 410 μmol/mol) as control. The results showed that net photosynthetic rate (Pn), intercellular CO2 concentration (Ci) and water utilization rate (WUE) of the three wheat varieties increased under high CO2 concentration, while stomatal conductance (Gs) and transpiration rate (Tr) decreased. The SPAD of Chuanmai 44 and Neimai 9 at heading stage was lower than that of the control, while the SPAD of Chinese Spring at heading stage and filling stage was higher than that of the control, indicating that the SPAD of different wheat varieties had different responses to high CO2 concentration. The maximum photochemical efficiency (Fv/Fm) of the three wheat varieties showed a downward trend, but all remained above 0.750, indicating that the three wheat varieties were still within the range of healthy physiological state. Chinese Spring at jointing and heading stage, Chuanmai 44 in jointing period, heading period, filling period showed K-band and L-band, Nemai 9 appeared K-band and L-band at jointing stage and filling stage, and only K-band appeared at heading stage, indicating that the photosystem Ⅱ (PSⅡ) donor side was damaged. In Chinese Spring, K-band and L-band did not appear at filling stage, and the light reaction could proceed normally. The energy flux absorbed per active reaction center (ABS/RC) in Chinese Spring was significantly lower than that of the control at the filling stage. ABS/RC, energy flux captured per active reaction center (TRo/RC) and total energy dissipated per active reaction center (DIo/RC) of Chuanmai 44 were significantly higher than those of the control at heading stage. The ABS/RC and TRo/RC of Neimai 9 at jointing stage and filling stage, and the electron flux transported per active reaction center (ETo/RC) and DIo/RC at filling stage were significantly higher than those of the control. In summary, under the condition of 900 μmol/mol CO2 concentration, the CO2 “fertilization effect” of the three wheat varieties was still significant. Chinese Spring showed relatively strong tolerance to high CO2 concentration, while Chuanmai 44 and Neimai 9 were more sensitive to high CO2 concentration. In order to protect the leaves from photooxidation damage, the three wheat varieties converted the absorbed excess light energy into heat to reduce the photoinhibition effect, thus ensuring the energy supply under high CO2 conditions and promoting the progress of wheat photosynthesis.

参考文献/References:

[1]MASSON-DELMOTTE V, ZHAI P, PIRANI A, et al. Climate change 2021:the physical science basis. Contribution of working group I to the sixth assessment report of the intergovernmental panel on climate change[R]. Geneva,Switzerland:Intergovernmental Panel on Climate Change(IPCC),2021.
[2]LYU C, HUANG Y, SUN W J, et al. Elevated CO2 raises the temperature optimum of photosynthesis and thus promotes net photosynthesis of winter wheat and rice[J]. Physiologia Plantarum,2022,174(4):e13757.
[3]WANG X Z, LIU F L. Effects of elevated cosub2/sub and heat on wheat grain quality[J]. Plants,2021,10(5):1027.
[4]COHEN I, RAPAPORT T, BERGER R T, et al. The effects of elevated CO2 and nitrogen nutrition on root dynamics[J]. Plant Science,2018,272:294-300.
[5]陈平平. 大气二氧化碳浓度升高对植物的影响[J]. 生物学通报,2002,37(3):20-22.
[6]孟凡超,张佳华,郝翠,等. CO2浓度升高和不同灌溉量对东北玉米光合特性及产量的影响[J]. 生态学报,2015,35(7):2126-2135.
[7]THONGBAI P, KOZAI T, OHYAMA K. CO2 and air circulation effects on photosynthesis and transpiration of tomato seedlings[J]. Scientia Horticulturae,2010,126(3):338-344.
[8]蒋高明,渠春梅. 北京山区辽东栎林中几种木本植物光合作用对CO2浓度升高的响应[J]. 植物生态学报,2000,24(2):204-208.
[9]CHOI D, WATANABE Y, GUY R D, et al. Photosynthetic characteristics and nitrogen allocation in the black locust(Robinia pseudoacacia L.) grown in a FACE system[J]. Acta Physiologiae Plantarum,2017,39(3):71.
[10]PANDEY A K, GHOSH A, AGRAWAL M, et al. Effect of elevated ozone and varying levels of soil nitrogen in two wheat(Triticum aestivum L.) cultivars:growth,gas-exchange,antioxidant status,grain yield and quality[J]. Ecotoxicology and Environmental Safety,2018,158:59-68.
[11]URBAN O, HLAVOV M, KLEM K, et al. Combined effects of drought and high temperature on photosynthetic characteristics in four winter wheat genotypes[J]. Field Crops Research,2018,223:137-149.
[12]XU M. The optimal atmospheric CO2 concentration for the growth of winter wheat(Triticum aestivum) [J]. Journal of Plant Physiology,2015,184:89-97.
[13]CHANG Z J, HAO L H, LU Y Z, et al. Effects of elevated CO2 concentration and experimental warming on morphological,physiological,and biochemical responses of winter wheat under soil water deficiency[J]. Frontiers in Plant Science,2023,14:1227286.
[14]KANG H X, ZHU T, ZHANG Y, et al. Elevated CO2 enhances dynamic photosynthesis in rice and wheat[J]. Frontiers in Plant Science,2021,12:e727374.
[15]DUBEY K S, TRIPATHI K S, PRANUTHI G. Effect of elevated CO2 on wheat crop:mechanism and impact[J]. Critical Reviews in Environmental Science and Technology,2015,45(21):2283-2304.
[16]WANG L, FENG Z Z, SCHJOERRING J K. Effects of elevated atmospheric CO2 on physiology and yield of wheat(Triticum aestivum L.):a meta-analytic test of current hypotheses[J]. Agriculture,Ecosystems & Environment,2013,178:57-63.
[17]常翠翠,张东升,郝兴宇,等. CO2浓度与温度升高对冬小麦叶片光合与快速叶绿素荧光特征的影响[J]. 植物生理学报,2021,57(4):919-928.
[18]姜倩倩,刘超,胡正华,等. 不同CO2浓度升高和氮肥水平对水稻叶绿素荧光特性的影响[J]. 生态学报,2021,41(12):4953-4962.
[19]孟凡超,郭军,周莉,等. 气温、CO2浓度和降水交互作用对作物生长和产量的影响[J]. 应用生态学报,2017,28(12):4117-4126.
[20]洪凯,李茂,许珊珊,等. CO2浓度升高对杉木幼苗生长及其光合特性和养分含量的影响[J]. 西北植物学报,2020,40(6):1011-1021.
[21]李彦生,金剑,刘晓冰. 作物对大气CO2浓度升高生理响应研究进展[J]. 作物学报,2020,46(12):1819-1830.
[22]EHLERS I, AUGUSTI A, BETSON T R, et al. Detecting long-term metabolic shifts using isotopomers:CO2-driven suppression of photorespiration in C3 plants over the 20th century[J]. Proceedings of the National Academy of Sciences of the United States of America,2015,112(51):15585-15590.
[23]李伏生,康绍忠,张富仓. CO2浓度、氮和水分对春小麦光合、蒸散及水分利用效率的影响[J]. 应用生态学报,2003,14(3):387-393.
[24]HUNSAKER D J, KIMBALL B A, PINTER P J, et al. CO2 enrichment and soil nitrogen effects on wheat evapotranspiration and water use efficiency[J]. Agricultural and Forest Meteorology,2000,104(2):85-105.
[25]SHIMONO H, NAKAMURA H, HASEGAWA T, et al. Lower responsiveness of canopy evapotranspiration rate than of leaf stomatal conductance to open-air CO2 elevation in rice[J]. Global Change Biology,2013,19(8):2444-2453.
[26]范金杰,俞杨浏,左强,等. 大气CO2浓度升高对小麦蒸腾耗水与根系吸水的影响[J]. 农业工程学报,2020,36(3):92-98.
[27]SHANKER A K, GUNNAPANENI D, BHANU D, et al. Elevated CO2 and water stress in combination in plants:brothers in arms or partners in crime?[J]. Biology,2022,11(9):1330.
[28]CAI Y, MIAO Y X, WU H, et al. Hyperspectral estimation models of winter wheat chlorophyll content under elevated CO2[J]. Frontiers in Plant Science,2021,12:642917.
[29]FATHURRAHMAN F, NIZAM M S, JULIANA W, et al. Growth improvement of rain tree(Albizia saman Jacq. Merr) seedlings under elevated concentration of carbon dioxide (CO2)[J]. Journal of Pure and Applied Microbiology,2016,10:1911-1917.
[30]周宁,景立权,王云霞,等. 开放式空气中CO2浓度和温度增高对水稻叶片叶绿素含量和SPAD值的动态影响[J]. 中国水稻科学,2017,31(5):524-532.
[31]WU J J, KRONZUCKER H J, SHI W M. Dynamic analysis of the impact of free-air CO2 enrichment(FACE) on biomass and N uptake in two contrasting genotypes of rice[J]. Functional Plant Biology,2018,45(7):696-704.
[32]于佳,于显枫,郭天文,等. 施氮和大气CO2浓度升高对春小麦拔节期光合作用的影响[J]. 麦类作物学报,2010,30(4):651-655.
[33]顾骏飞,周振翔,李志康,等. 水稻低叶绿素含量突变对光合作用及产量的影响[J]. 作物学报,2016,42(4):551-560.
[34]HE L Z, YU L, LI B, et al. The effect of exogenous calcium on cucumber fruit quality,photosynthesis,chlorophyll fluorescence,and fast chlorophyll fluorescence during the fruiting period under hypoxic stress[J]. BMC Plant Biology,2018,18(1):180.
[35]孟力力,宋江峰,柏宗春,等. 远红光对生菜光合作用及叶绿素荧光特性的影响[J]. 江苏农业学报,2022,38(1):181-189.
[36]于明华,马烈,孙权,等. 遮光下5个月季品种的叶片光合功能及叶绿素荧光特性[J/OL]. 分子植物育种,2022:1-11.
[2024-04-01]. http://kns.cnki.net/kcms/detail/46.1068.s.20220105.1744.008.html.
[37]范佩佩,冯芳,刘超,等. 不同CO2浓度升高水平对粳稻叶片荧光特性的影响[J]. 应用生态学报,2019,30(11):3735-3744.
[38]王佩玲,许育彬,宋淑英,等. 大气CO2浓度倍增和施氮对冬小麦光合及叶绿素荧光特性的影响[J]. 西北植物学报,2011,31(1):144-151.
[39]GUO Y J, LU Y P, GOLTSEV V, et al. Comparative effect of tenuazonic acid,diuron,bentazone,dibromothymoquinone and methyl viologen on the kinetics of Chl a fluorescence rise OJIP and the MR820 signal[J]. Plant Physiology and Biochemistry,2020,156:39-48.
[40]李鹏民,高辉远,RETO J,等. 快速叶绿素荧光诱导动力学分析在光合作用研究中的应用[J]. 植物生理与分子生物学学报,2005,31(6):559-566.
[41]PAN C Z, AHAMMED G J, LI X, et al. Elevated CO2 improves photosynthesis under high temperature by attenuating the functional limitations to energy fluexes,electron transport and redox homeostasis in tomato leaves[J]. Frontiers in Plant Science,2018,9:1739.
[42]CHEN X J, ZHOU Y, CONG Y D, et al. Ascorbic acid-induced photosynthetic adaptability of processing tomatoes to salt stress probed by fast OJIP fluorescence rise[J]. Frontiers in Plant Science,2021,12:594400.
[43]KAN X, REN J J, CHEN T T, et al. Effects of salinity on photosynthesis in maize probed by prompt fluorescence,delayed fluorescence and P700 signals[J]. Environmental and Experimental Botany,2017,140:56-64.
[44]CHAVAN S G, DUURSMA R A, TAUSZ M, et al. Elevated CO2 alleviates the negative impact of heat stress on wheat physiology but not on grain yield[J]. Journal of Experimental Botany,2019,70(21):6447-6459.

相似文献/References:

[1]伍 宏,朱昌华,夏 凯,等.叶面喷施激动素对小麦品种济麦22品质的影响[J].江苏农业学报,2016,(02):299.[doi:10.3969/j.issn.1000-4440.2016.02.010]
 WU Hong,ZHU Chang-hua,XIA Kai,et al.Effect of foliar application of kinetin on quality of Triticum aestivum L. Jimai 22[J].,2016,(02):299.[doi:10.3969/j.issn.1000-4440.2016.02.010]
[2]蒋正宁,别同德,赵仁惠,等.受条锈菌诱导的小麦丝氨酸苏氨酸激酶基因TaS/TK的克隆与表达[J].江苏农业学报,2016,(05):980.[doi:10.3969/j.issn.1000-4440.2016.05.004]
 JIANG Zheng-ning,BIE Tong-de,ZHAO Ren-hui,et al.Cloning and expression analysis of a Serine/Threonine protein kinase gene TaS/TK in wheat in response to stripe rust fungal infection[J].,2016,(02):980.[doi:10.3969/j.issn.1000-4440.2016.05.004]
[3]丁彬彬,张旭,吴磊,等.小麦3B 短臂染色体抗赤霉病主效 QTL 区域候选基因的表达[J].江苏农业学报,2017,(01):6.[doi:10.3969/j.issn.1000-4440.2017.01.002 ]
 DING Bin-bin,ZHANG Xu,WU Lei,et al.Expression of candidate genes on the region of a major QTL for the resistance to Fusarium head blight on the short arm of chromosome 3B in wheat[J].,2017,(02):6.[doi:10.3969/j.issn.1000-4440.2017.01.002 ]
[4]周淼平,姚金保,张鹏,等.小麦幼苗纹枯病抗性评价新方法[J].江苏农业学报,2017,(01):61.[doi:10.3969/j.issn.1000-4440.2017.01.010 ]
 ZHOU Miao-ping,YAO Jin-bao,ZHANG Peng,et al.New method for the resistance evaluation of wheat sharp eyespot in seedling[J].,2017,(02):61.[doi:10.3969/j.issn.1000-4440.2017.01.010 ]
[5]吴磊,姜朋,张瑜,等.苏麦3号小麦穗部病毒诱导的基因沉默(VIGS)体系的建立及验证[J].江苏农业学报,2017,(02):248.[doi:doi:10.3969/j.issn.1000-4440.2017.02.002]
 WU Lei,JIANG Peng,ZHANG Yu,et al.Construction and validation of virus-induced gene silencing(VIGS) system in spike of wheat variety Sumai 3[J].,2017,(02):248.[doi:doi:10.3969/j.issn.1000-4440.2017.02.002]
[6]邵继锋,陈荣府,董晓英,等.利用分根技术研究小麦铝磷交互作用[J].江苏农业学报,2016,(01):78.[doi:10.3969/j.issn.1000-4440.2016.01.012 ]
 SHAO Ji-feng,CHEN Rong-fu,DONG Xiao-ying,et al.Aluminum-phosphorus interaction in wheat grown in a split-root device[J].,2016,(02):78.[doi:10.3969/j.issn.1000-4440.2016.01.012 ]
[7]叶景秀.小麦籽粒蛋白质双向电泳体系的优化[J].江苏农业学报,2015,(05):957.[doi:doi:10.3969/j.issn.1000-4440.2015.05.002]
 YE Jing-xiu.Optimization of two-dimensional electrophresis system for grain protein in spring wheat[J].,2015,(02):957.[doi:doi:10.3969/j.issn.1000-4440.2015.05.002]
[8]郑舒文,徐其隆,邹华文.脱落酸对涝渍胁迫下小麦产量的影响[J].江苏农业学报,2015,(05):967.[doi:doi:10.3969/j.issn.1000-4440.2015.05.004]
 ZHENG Shu-wen,XU Qi-long,ZOU Hua-wen.Yield of waterlogged wheat in response to ABA application[J].,2015,(02):967.[doi:doi:10.3969/j.issn.1000-4440.2015.05.004]
[9]张玉萍,马占鸿.不同施氮量下小麦遥感估产模型构建[J].江苏农业学报,2015,(06):1325.[doi:doi:10.3969/j.issn.1000-4440.2015.06.020]
 ZHANG Yu-ping,MA Zhan-hong.Yield estimation model of wheat based on remote sensing data under different nitrogen supply conditions[J].,2015,(02):1325.[doi:doi:10.3969/j.issn.1000-4440.2015.06.020]
[10]张卓亚,王晓琳,许晓明,等.腐植酸对小麦扬花期水分利用效率及灌浆进程的影响[J].江苏农业学报,2015,(04):725.[doi:10.3969/j.issn.1000-4440.2015.04.003]
 ZHANG Zhuo-ya,WANG Xiao-ling,XU Xiao-ming,et al.Effect of humic acid on water use efficiency and grouting process of wheat at flowering[J].,2015,(02):725.[doi:10.3969/j.issn.1000-4440.2015.04.003]

备注/Memo

备注/Memo:
收稿日期:2024-05-13基金项目:国家自然科学青年基金项目(31501304);西华师范大学国家级一般培育项目(19B039)作者简介:艾伟伟(2000-),女,贵州毕节人,硕士研究生,主要从事生物化学与分子生物学研究。(E-mail)1772862698@qq.com通讯作者:魏淑红,(E-mail)weishuhong@cwnu.edu.cn
更新日期/Last Update: 2025-03-27