参考文献/References:
[1]ZHU J K. Abiotic stress signaling and responses in plants[J]. Cell,2016,167:313-324.
[2]TAYLOR N L, TAN Y F, JACOBY R P, et al. Abiotic environmental stress induced changes in the Arabidopsis thaliana chloroplast, mitochondria and peroxisome proteomes[J]. Journal of Proteonomics,2009,72(3):367-378.
[3]LIU Y J, JI X Y, NIE X G, et al. Arabidopsis AtbHLH112 regulates the expression of genes involved in abiotic stress tolerance by binding to their E-box and GCG-box motifs[J]. New Phytologist,2015,207:692-709.
[4]HU Y F, ZHAO H Y, XUE L Y, et al. IbMYC2 contributes to salt and drought stress tolerance via modulating anthocyanin accumulation and ROS-scavenging system in sweet potato[J]. International Journal of Molecular Sciences,2024,25(4):2096.
[5]PHUKAN U J, JEENA G S, SHUKLA R K. WRKY transcription factors:molecular regulation and stress responses in plants[J]. Frontiers in Plant Science,2016,7:760.
[6]ZHANG G, CHEN M, LI L, et al. Overexpression of the soybean GmERF3 gene, an AP2/ERF type transcription factor for increased tolerances to salt, drought, and diseases in transgenic tobacco[J]. Journal of Experimental Botany,2009,60:3781-3796.
[7]CUI M H, YOO K S, HYOUNG S J, et al. An Arabidopsis R2R3-MYB transcription factor, AtMYB20, negatively regulates type 2C serine/threonine protein phosphatases to enhance salt tolerance[J]. FEBS Lett,2013,587(12):1773-1778.
[8]WANG Y X, LIU Z W, WU Z J, et al. Transcriptome-wide identification and expression analysis of the NAC gene family in tea plant [Camellia sinensis (L.) O. Kuntze][J]. PLoS One,2016,11:e0166727.
[9]ZHANG M J, XUE Y Y, XU S, et al. Identification of ARF genes in Cucurbita pepo L. and analysis of expression patterns,and functional analysis of CpARF22 under drought,salt stress[J]. BMC Genomics,2024,25(1):112.
[10]YANG Y, YU T F, MA J, et al. The soybean bZIP transcription factor gene GmbZIP2 confers drought and salt resistances in transgenic plants[J]. International Journal of Molecular Sciences,2020,21(2):670.
[11]LIU W W, TAI H H, LI S S, et al. bHLH122 is important for drought and osmotic stress resistance in Arabidopsis and in the repression of ABA catabolism[J]. New Phytologist,2014,201(4):1192-1204.
[12]WASEEM M, RONG X Y, LI Z G. Dissecting the role of a basic Helix-Loop-Helix transcription factor, SlbHLH22, under salt and drought stresses in transgenic Solanum lycopersicum L. [J]. Frontiers in Plant Science,2019,10:734.
[13]ZHAO X B, WANG Q, YAN C X, et al. The bHLH transcription factor AhbHLH121 improves salt tolerance in peanut[J]. International Journal of Biological Macromolecules,2024,256(2):128492.
[14]CHEN Y, LI F, MA Y, et al. Overexpression of OrbHLH001, a putative helix-loop-helix transcription factor, causes increased expression of AKT1 and maintains ionic balance under salt stress in rice[J]. Journal of Plant Physiology,2013,170(1):93-100.
[15]LIU X, PI B Y, DU Z Y, et al. The transcription factor GmbHLH3 confers Cl-/salt tolerance to soybean by upregulating GmCLC1 expression for maintenance of anion homeostasis[J]. Environmental and Experimental Botany,2022,194:104755.
[16]VERMA D, JALMI S K, BHAGAT P K, et al. A bHLH transcription factor, MYC2, imparts salt intolerance by regulating proline biosynthesis in Arabidopsis[J]. FEBS Journal,2020,287(12):2560-2576.
[17]DENG H Y, QI L, CAO R Z, et al. Overexpression of SmMYC2 enhances salt resistance in Arabidopsis thaliana and Salvia miltiorrhiza hairy roots[J]. Journal of Plant Physiology,2023,280:153862.
[18]XU Z L, LIU X Q, HE X L, et al. The soybean basic Helix-Loop-Helix transcription factor ORG3-like enhances cadmium tolerance via increased iron and reduced cadmium uptake and transport from roots to shoots[J]. Frontiers in Plant Science,2017,8:1098.
[19]CHENG Q, DONG L D, GAO T J, et al. The bHLH transcription factor GmPIB1 facilitates resistance to Phytophthora sojae in Glycine max[J]. Journal of Experimental Botany,2018,69(10):2527-2541.
[20]WANG C F, LI X M, ZHUANG Y B, et al. A novel miR160a-GmARF16-GmMYC2 module determines soybean salt tolerance and adaptation[J]. New Phytologist,2024,241(5):2176-2192.
[21]LIU X, YANG X X, ZHANG B. Transcriptome analysis and functional identification of GmMYB46 in soybean seedlings under salt stress[J]. PeerJ,2021,9:e12492.
[22]赵欣,卢海峰,钱程,等. 紫花苜蓿叶面积和叶解剖结构对盐胁迫的响应[J]. 江苏农业科学,2023,51(19):145-152.
[23]徐文清,李少楠,方啸宇,等. 盐胁迫对2个葡萄品种扦插苗光合特性及抗氧化能力的影响[J]. 南方农业学报,2023,54(10):3000-3009.
[24]陈星星,刘新社,王盛荣. 腐殖酸对盐胁迫下土壤理化性质、微环境及苦瓜生长的影响[J]. 江苏农业科学,2023,51(17):138-144.
[25]陈亚辉,张师,杨庆山,等. 多枝柽柳叶片响应NaCl胁迫的转录组分析[J]. 江苏农业学报,2022,38(5):1188-1202.
[26]LORENZO O, CHICO J M, SNCHEZ-SERRNO J J, et al. Jasmonate-insensitive1 encodes a MYC transcription factor essential to discriminate between different jasmonate-regulated defense responses in Arabidopsis[J]. Plant Cell,2004,16(7):1938-1950.
[27]WANG W, SHI X, CHEN D, et al. The Brassica napus MYC2 regulates drought tolerance by monitoring stomatal closure[J]. European Journal of Horticultural Science,2020,85:226-231.
[28]ZHU J K. Plant salt tolerance[J]. Trends in Plant Science,2001,6:66-71.
[29]AI HASSAN M, CHAURA J, DONAT-TORRES M P, et al. Antioxidant responses under salinity and drought in three closely related wild monocots with different ecological optima[J]. AoB Plants,2017,9(2):plx009.
[30]KRASENSKY J, JONAK C. Drought, salt, and temperature stress-induced metabolic rearrangements and regulatory networks[J]. Journal of Experimental Botany,2012,63(4):1593-1608.
相似文献/References:
[1]刘朝茂,李成云.玉米与大豆间作对玉米叶片衰老的影响[J].江苏农业学报,2017,(02):322.[doi:doi:10.3969/j.issn.1000-4440.2017.02.013]
LIU Chao-mao,LI Cheng-yun.Effects of maize/soybean intercropping on maize leaf senescence[J].,2017,(07):322.[doi:doi:10.3969/j.issn.1000-4440.2017.02.013]
[2]张令瑄,谢婷婷,王瑾,等.大田条件下UV-B 辐射增强对大豆根际土壤相关指标的影响[J].江苏农业学报,2016,(01):118.[doi:10.3969/j.issn.1000-4440.2016.01.018]
ZHANG Ling-xuan,XIE Ting-ting,WANG Jin,et al.Soybean rhizosphere soil parameters in response to enhanced UV-B radiation under field condition[J].,2016,(07):118.[doi:10.3969/j.issn.1000-4440.2016.01.018]
[3]李元元,高志强,曹清河.甘薯SPF1转录因子的生物信息学分析[J].江苏农业学报,2017,(04):760.[doi:doi:10.3969/j.issn.1000-4440.2017.04.006]
LI Yuan-yuan,GAO Zhi-qiang,CAO Qing-he.Bioinformatics analysis of SPF1 transcription factors from sweet potato[Ipomoea batatas(L.) Lam][J].,2017,(07):760.[doi:doi:10.3969/j.issn.1000-4440.2017.04.006]
[4]宁丽华,何晓兰,张大勇.大豆耐盐相关基因GmNcl1功能标记的开发及验证[J].江苏农业学报,2017,(06):1227.[doi:doi:10.3969/j.issn.1000-4440.2017.06.005]
NING Li-hua,HE Xiao-lan,ZHANG Da-yong.Development and validation of the function marker of soybean salt tolerance gene GmNcl1[J].,2017,(07):1227.[doi:doi:10.3969/j.issn.1000-4440.2017.06.005]
[5]杨艳丽,杨勇,李大红,等.转桃PpCuZnSOD基因大豆的耐旱性[J].江苏农业学报,2018,(05):978.[doi:doi:10.3969/j.issn.1000-4440.2018.05.003]
YANG Yan-li,YANG Yong,LI Da-hong,et al.Drought tolerance of transgenic soybean with PpCuZnSOD gene[J].,2018,(07):978.[doi:doi:10.3969/j.issn.1000-4440.2018.05.003]
[6]秦文斌,戴忠良,山溪,等.甘蓝冷胁迫相关基因BobHLH18克隆与表达分析[J].江苏农业学报,2019,(01):149.[doi:doi:10.3969/j.issn.1000-4440.2019.01.022]
QIN Wen-bin,DAI Zhong-liang,SHAN Xi,et al.Molecular cloning and expression analysis of cold stress-related gene BobHLH18 in cabbage (Brassica oleracea var. capitata L.)[J].,2019,(07):149.[doi:doi:10.3969/j.issn.1000-4440.2019.01.022]
[7]唐跃辉,包欣欣,王健,等.小桐子Dof基因家族生物信息学与表达分析[J].江苏农业学报,2019,(01):15.[doi:doi:10.3969/j.issn.1000-4440.2019.01.003]
TANG Yue-hui,BAO Xin-xin,WANG Jian,et al.Bioinformatics and expression analysis of the Dof gene family in physic nut[J].,2019,(07):15.[doi:doi:10.3969/j.issn.1000-4440.2019.01.003]
[8]孙彦坤,陈睿,李静,等.不同降雨年型下反枝苋和大豆光合特征的比较[J].江苏农业学报,2019,(03):554.[doi:doi:10.3969/j.issn.1000-4440.2019.03.008]
SUN Yan-kun,CHEN Rui,LI Jing,et al.Comparison of photosynthetic characteristics between Amaranthus retroexus and Glycine max under different annual rainfall pattern[J].,2019,(07):554.[doi:doi:10.3969/j.issn.1000-4440.2019.03.008]
[9]潘宝贵,钱恒彦,戈伟,等.辣椒应答冷信号转导机制研究进展[J].江苏农业学报,2019,(03):743.[doi:doi:10.3969/j.issn.1000-4440.2019.03.034]
PAN Bao-gui,QIAN Heng-yan,GE Wei,et al.Research progress of cold signal transduction mechanisms in pepper[J].,2019,(07):743.[doi:doi:10.3969/j.issn.1000-4440.2019.03.034]
[10]曹媛媛,陈春,郭婷婷,等.亲和性促生菌DW12-L的定殖及其对大豆生长的影响[J].江苏农业学报,2019,(04):776.[doi:doi:10.3969/j.issn.1000-4440.2019.04.004]
CAO Yuan yuan,CHEN Chun,GUO Ting ting,et al.Colonization of soybean affinity rhizobacteria strain DW12-L and its effects on soybean growth[J].,2019,(07):776.[doi:doi:10.3969/j.issn.1000-4440.2019.04.004]