[1]戚金存,刘大泉,刘泓,等.干旱胁迫及复水对槟榔幼苗形态和生理特性的影响[J].江苏农业学报,2024,(04):615-624.[doi:doi:10.3969/j.issn.1000-4440.2024.04.005]
 QI Jin-cun,LIU Da-quan,LIU Hong,et al.Effects of drought stress and rehydration on the morphology and physiological characteristics of betel nut seedlings[J].,2024,(04):615-624.[doi:doi:10.3969/j.issn.1000-4440.2024.04.005]
点击复制

干旱胁迫及复水对槟榔幼苗形态和生理特性的影响()
分享到:

江苏农业学报[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2024年04期
页码:
615-624
栏目:
遗传育种·生理生化
出版日期:
2024-04-30

文章信息/Info

Title:
Effects of drought stress and rehydration on the morphology and physiological characteristics of betel nut seedlings
作者:
戚金存刘大泉刘泓金鑫陈明婉吕猛杨福孙李昌珍
(海南大学热带农林学院,海南海口570228)
Author(s):
QI Jin-cunLIU Da-quanLIU HongJIN XinCHEN Ming-wanLYU MengYANG Fu-sunLI Chang-zhen
(College of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China)
关键词:
槟榔幼苗干旱胁迫复水形态指标生理特性
Keywords:
betel nut seedlingsdrought stressrehydrationmorphological indexphysiological characteristics
分类号:
S792.91
DOI:
doi:10.3969/j.issn.1000-4440.2024.04.005
摘要:
本研究采用盆栽控水法,对槟榔幼苗在干旱胁迫和复水过程中发生的形态和生理特性变化进行研究,以评价干旱胁迫和复水对槟榔幼苗的影响。以正常浇水为对照(CK),设置干旱时间分别为5 d、10 d、15 d、20 d、25 d、30 d,在每个干旱时间节点取样后立即进行复水,并在复水后1 d、4 d、7 d分别取样。研究结果表明:干旱后,槟榔幼苗根冠比增加;复水后,根冠比除干旱5 d恢复到CK水平外,其余处理均未恢复到CK水平。根、茎、叶和种核含水量以及净光合速率(A)、蒸腾速率(E)、胞间CO2浓度(Ci)、气孔导度(Gs)均随着干旱时间的延长呈现递减趋势;在干旱胁迫30 d时根、茎、叶和种核含水量以及A、E、Ci和Gs达到最低,与CK相比分别下降了21.87%、28.97%、75.01%、34.24%、100.00%、92.64%、75.05%和95.70%;复水后,根、茎、叶和种核含水量以及A、E、Ci和Gs均在干旱20 d前复水后恢复效果明显,但在干旱25 d复水后效果不明显。过氧化物酶(POD)活性呈现先升后降再升高趋势,过氧化氢酶(CAT)、超氧化物歧化酶(SOD)活性和丙二醛(MDA)含量则随着干旱时间的延长呈现先升后降趋势;SOD活性在干旱10 d时达到最大值,与CK相比增加了9.48%;CAT和POD活性则在干旱15 d达到最大值,与CK相比分别增加317.99%和44.88%;MDA在干旱25 d时达到最高,与CK相比增加了59.99%。综上所述,槟榔幼苗能维持正常生长的最长干旱时间是20 d,当持续干旱超过20 d后,将对槟榔幼苗造成无法逆转的伤害,故在持续干旱20 d内必须对槟榔幼苗进行灌溉。
Abstract:
In this study, changes in morphological and physiological characteristics of betel nut seedlings during drought stress and rehydration were investigated by using potting water control method to evaluate the effects of drought stress and rehydration on betel nut seedlings. Normal watering was used as the control (CK) and the drought time was set to 5 d, 10 d, 15 d, 20 d, 25 d, and 30 d. Rewatering was performed immediately after sampling at each drought time node, and sampling was performed on 1 d, 4 d, and 7 d after rewatering, respectively. The results showed that the root-crown ratio of betel nut seedlings increased after drought. After rewatering, the root-crown ratio did not return to the CK level except for the 5 d drought treatment. The water content of roots, stems, leaves and seed kernels, net photosynthetic rate (A), transpiration rate (E), intercellular CO2 concentration (Ci) and stomatal conductance (Gs) showed decreasing trends with the extension of drought time. The water content of roots, stems, leaves and seed kernels, as well as A, E, Ci and Gs reached the minimum at 30 d of drought stress, decreasing by 21.87%, 28.97%, 75.01%, 34.24%, 100.00%, 92.64%, 75.05% and 95.70%, respectively, compared with CK. The water content of roots, stems, leaves and seed kernels, and A, E, Ci and Gs all recovered significantly after rewatering before 20 days of drought, but the recovery effect was not obvious at 25 days of drought. Peroxidase (POD) activity showed a trend of increasing first, then decreasing and then increasing, while catalase (CAT) activity, superoxide dismutase (SOD) activity and malondialdehyde (MDA) content increased first and then decreased with the extension of drought time. The activity of SOD reached the maximum at 10 d of drought, increasing by 9.48% compared with that in CK. The activities of CAT and POD reached the maximun at 15 d of drought, increasing by 317.99% and 44.88%, respectively, compared with CK. The content of MDA reached the highest at 25 d of drought, which increased by 59.99% compared with CK. In summary, the longest drought time for betel nut seedlings to maintain normal growth was 20 days. When the continuous drought exceeded 20 days, it would cause irreversible damage to betel nut seedlings. Therefore, betel nut seedlings must be irrigated within 20 days of continuous drought.

参考文献/References:

[1]张琳,李欢欢,于淑坤,等. 番茄Sl WDR204基因正调控植物干旱胁迫[J]. 安徽农业科学,2019,47(1):96-98,114.
[2]JALEEL C A, GOPI R, SANKAR B, et al. Differential responses in water use efficiency in two varieties of Catharanthus roseus under drought stress[J]. Comptes Rendus Biologies,2008,331(1):42-47.
[3]王艺,杨凯来. 菌根化马尾松苗生长形态对干旱及复水响应[J]. 西南农业学报,2022,35(8):1794-1801.
[4]张明聪,何松榆,秦彬,等. 外源褪黑素缓解干旱胁迫对春大豆苗期影响的生理调控效应[J]. 大豆科学,2020,39(5):742-750.
[5]DONG S K, JIANG Y Z, DONG Y C, et al. A study on soybean responses to drought stress and rehydration[J]. Saudi Journal of Biological Sciences,2019,26(8):2006-2017.
[6]周欢欢,傅卢成,马玲,等. 干旱胁迫及复水对‘波叶金桂’生理特性的影响[J]. 浙江农林大学学报,2019,36(4):687-696.
[7]FURLAN A, BIANUCCI E, TORDABLE M D C, et al. Dynamic responses of photosynthesis and the antioxidant system during a drought and rehydration cycle in peanut plants[J]. Funct Plant Biol,2016,43(4):337-345.
[8]CHAKHCHAR A, LAMAOUI M, AISSAM S, et al. Differential physiological and antioxidative responses to drought stress and recovery among four contrasting Argania spinosa ecotypes[J]. J Plant Interactions,2016,11(1):1-33.
[9]姜鹏,秦美欧,蔡福,等. 干旱-复水联动对东北春玉米光合生理与产量的影响[J]. 干旱气象,2023,41(2):207-214.
[10]广东省植物研究所. 海南植物志[M]. 北京:科学出版社,1977:169-170.
[11]曹红星,冯美利,孙程旭,等. 低温及干旱胁迫对槟榔幼苗生理生化特性的影响[J]. 西南农业学报,2010,23(3):832-835.
[12]陈歆. 土壤水分胁迫对槟榔幼苗生理生态特性的影响[D]. 海口:海南大学,2010.
[13]袁赫奕,陈明婉,戚金存,等. 氮肥形态与用量对槟榔幼苗形态和生理特性的影响[J]. 分子植物育种,2022,20(16):5553-5563.
[14]王燕凌,刘君,齐曼·尤努斯,等. 植物生理学实验指导[M]. 北京:中国农业出版社,2014:14-15.
[15]CLARIDGE K, FRANKLIN S B. Compensation and plasticity in an invasive plant species[J]. Biological Invasions,2002,4(4):339-347.
[16]单立山,李毅,石万里,等. 土壤水分胁迫对红砂幼苗生长和渗透调节物质的影响[J]. 水土保持通报,2015,35(6):106-109.
[17]李洪立,李琼,杨福孙,等. 水分胁迫对槟榔幼苗根系形态与活力的影响[J]. 热带作物学报,2011,32(11):2016-2019.
[18]王艺,杨凯来. 菌根化马尾松苗生长形态对干旱及复水响应[J]. 西南农业学报,2022,35(8):1794-1801.
[19]李文娆,张岁岐,丁圣彦,等. 干旱胁迫下紫花苜蓿根系形态变化及与水分利用的关系[J]. 生态学报,2010, 30(19):5140-5150.
[20]严四英,翁白莎,景兰舒,等. 干旱及旱后复水对夏玉米根系生长的影响[J]. 节水灌溉,2022(3):75-81,91.
[21]方明月,汪溢磐,赵奕,等. 低温干旱复合胁迫对8个紫花苜蓿品种形态和生理特征的影响[J]. 草地学报,2022,30(11):2967-2974.
[22]杨彪生,单立山,马静,等. 红砂幼苗生长及根系形态特征对干旱-复水的响应[J]. 干旱区研究,2021,38(2):469-478.
[23]张俊杰,陈金平,汤钰镂,等. 花期前后干旱胁迫对复水后夏玉米光合特性与产量的影响[J]. 作物学报,2023,49(5):1397-1409.
[24]SIMKIN A J, KAPOOR L, DOSS C G P, et al. The role of photosynthesis-related pigments in light harvesting, photoprotection, and enhancement of photosynthetic yield in planta[J]. Photosynthesis Research,2022,152:23-42.
[25]李晗,杨福孙,张瀚. 不同灌水量对槟榔光合特性及产量的影响[J]. 分子植物育种,2022,20(9):3091-3101.
[26]刘旻霞,夏素娟,穆若兰,等. 黄土高原中部三种典型绿化植物光合特性的季节变化[J]. 生态学杂志,2020,39(12):4098-4109.
[27]吴俊文,刘珊,李吉跃,等. 干旱胁迫下广东石漠化地区造林树种光合和耗水特性[J]. 生态学报,2016,36(11):3429-3440.
[28]姚庆群,谢贵水. 干旱胁迫下光合作用的气孔与非气孔限制[J]. 热带农业科学,2005(4):80-85.
[29]厉广辉,万勇善,刘风珍,等. 苗期干旱及复水条件下不同花生品种的光合特性[J]. 植物生态学报,2014,38(7):729-739.
[30]袁有波,李继新,丁福章,等. 不同干旱胁迫对烟草叶片保护酶活性的影响[J]. 中国烟草科学,2009,30(5):10-13.
[31]刘艳菊,曹红星. 棕榈科植物抗寒、抗旱生理生化研究进展[J]. 中国农学通报,2015,31(22):46-50.
[32]WANG M J, LIANG W W, FAN L L, et al. Physiological response of Vitis amurensis Rupr. Seedlings to drought stress and re-watering[J]. IOP Conference Series: Earth and Environmental Science,2021,697(1):012032.
[33]DONG S K, JIANG Y Z, DONG Y C, et al. A study on soybean responses to drought stress and rehydration[J]. Saudi Journal of Biological Sciences,2019,26(8):2006-2017.
[34]黄旭光,黄玲璞,王卫南,等. 干旱胁迫及复水对朱槿幼苗生理特性的影响[J]. 安徽农业科学,2020, 48(21):137-139,150.
[35]刘建新,王鑫,王凤琴. 水分胁迫对苜蓿幼苗渗透调节物质积累和保护酶活性的影响[J]. 草业科学,2005(3):18-21.
[36]周宜君,冯金朝,马文文,等. 植物抗逆分子机制研究进展[J]. 中央民族大学学报(自然科学版),2006(2):169-176.
[37]高鹏飞,张静,范卫芳,等. 干旱胁迫对光叉委陵菜根系特征、结构和生理特性的影响[J]. 草业学报,2022,31(2):203-212.
[38] 陈翠红,周蕴薇,李家绮,等. 干旱胁迫对侧金盏花生理特性的影响[J]. 福建农业学报,2021,36(5):532-541.

相似文献/References:

[1]佚名 佚名 佚名.三才期刊采编系统文章正在整理中…[J].江苏农业学报,2005,(01):5.
 XIE Xin,ZHAO Zhong.三才期刊采编系统文章正在整理中…[J].,2005,(04):5.
[2]佚名 佚名 佚名.三才期刊采编系统文章正在整理中…[J].江苏农业学报,2006,(01):5.
 XIE Xin,ZHAO Zhong.三才期刊采编系统文章正在整理中…[J].,2006,(04):5.
[3]熊洁,邹晓芬,邹小云,等.干旱胁迫对不同基因型油菜农艺性状和产量的影响[J].江苏农业学报,2015,(03):494.[doi:10.3969/j.issn.1000-4440.2015.03.005]
 XIONG Jie,ZOU Xiao-fen,ZOU Xiao-yun,et al.Effects of drought stress on agronomic traits and yield of different rapeseed genotypes[J].,2015,(04):494.[doi:10.3969/j.issn.1000-4440.2015.03.005]
[4]肇莹,杨镇,杨涛,等.植物内生菌醇提取物对草坪草抗旱性的影响[J].江苏农业学报,2015,(01):39.[doi:10.3969/j.issn.1000-4440.2015.01.006]
 ZHAO Ying,YANG Zhen,YANG Tao,et al.Influence of plant endophyte extract on turfgrass drought tolerance[J].,2015,(04):39.[doi:10.3969/j.issn.1000-4440.2015.01.006]
[5]孟力力,张俊,闻婧.干旱胁迫对彩叶草光合特性及叶片超微结构的影响[J].江苏农业学报,2015,(01):180.[doi:10.3969/j.issn.1000-4440.2015.01.028]
 MENG Li-li,ZHANG Jun,WEN Jing.Changes of photosynthetic characteristics of Coleus blumei and mesophyll cell ultrastructure in response to drought stress[J].,2015,(04):180.[doi:10.3969/j.issn.1000-4440.2015.01.028]
[6]张丽丽,徐碧玉,刘菊华,等.MaASR1基因通过乙烯途径提高拟南芥抗旱性的作用机制[J].江苏农业学报,2018,(03):511.[doi:doi:10.3969/j.issn.1000-4440.2018.03.005]
 ZHANG Li-li,XU Bi-yu,LIU Ju-hua,et al.The regulation mechanism of MaASR1 gene for improving the drought resistance of Arabidopsis by ethylene pathway[J].,2018,(04):511.[doi:doi:10.3969/j.issn.1000-4440.2018.03.005]
[7]麻云霞,李钢铁,张宏武,等.外源硅对酸枣生长和生理生化特征的影响[J].江苏农业学报,2018,(05):1113.[doi:doi:10.3969/j.issn.1000-4440.2018.05.021]
 MA Yun-xia,LI Gang-tie,ZHANG Hong-wu,et al.Effects of exogenous silicon on growth, physiological and biochemical characteristics of zizyphus jujube plant[J].,2018,(04):1113.[doi:doi:10.3969/j.issn.1000-4440.2018.05.021]
[8]葛道阔,曹宏鑫,杨余旺,等.干旱胁迫下油菜栽培模拟优化决策系统(Rape-CSODS)的订正及其检验[J].江苏农业学报,2019,(01):56.[doi:doi:10.3969/j.issn.1000-4440.2019.01.008]
 GE Dao-kuo,CAO Hong-xin,YANG Yu-wang,et al.Modification and verification of Rape-CSODS under drought stress[J].,2019,(04):56.[doi:doi:10.3969/j.issn.1000-4440.2019.01.008]
[9]陈丽,焦健,朱绍丹,等.油橄榄对牧草间作与干旱胁迫交互作用的根系生理响应[J].江苏农业学报,2019,(06):1434.[doi:doi:10.3969/j.issn.1000-4440.2019.06.024]
 CHEN Li,JIAO Jian,ZHU Shao-dan,et al.Root physiological response of olive to the interaction of pasture intercropping and drought stress[J].,2019,(04):1434.[doi:doi:10.3969/j.issn.1000-4440.2019.06.024]
[10]陈丽,焦健,朱绍丹,等.牧草间作对干旱胁迫下油橄榄根系形态特征的影响[J].江苏农业学报,2020,(01):39.[doi:doi:10.3969/j.issn.1000-4440.2020.01.006]
 CHEN Li,JIAO Jian,ZHU Shao-dan,et al.Effects of pasture intercropping on root morphological characteristics of olive under drought stress[J].,2020,(04):39.[doi:doi:10.3969/j.issn.1000-4440.2020.01.006]

备注/Memo

备注/Memo:
收稿日期:2023-08-05基金项目:海南省棕榈类(槟榔)现代农业产业技术体系项目(HNARS-1-G3)作者简介:戚金存(1998-),男,甘肃宕昌人,硕士研究生,研究方向为热带作物绿色高效栽培。(E-mail)1186009250@qq.com通讯作者:李昌珍,(E-mail)lichangzhen029@163.com
更新日期/Last Update: 2024-05-22