[1]刘金洋,林云,陈景斌,等.绿豆C3H和NBS转录因子家族成员鉴定及盐胁迫响应分析[J].江苏农业学报,2023,(05):1097-1109.[doi:doi:10.3969/j.issn.1000-4440.2023.05.002]
 LIU Jin-yang,LIN Yun,CHEN Jing-bin,et al.Identification and salt stress response analysis of mungbean C3H and NBS transcription factor family members[J].,2023,(05):1097-1109.[doi:doi:10.3969/j.issn.1000-4440.2023.05.002]
点击复制

绿豆C3H和NBS转录因子家族成员鉴定及盐胁迫响应分析()
分享到:

江苏农业学报[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2023年05期
页码:
1097-1109
栏目:
遗传育种·生理生化
出版日期:
2023-08-31

文章信息/Info

Title:
Identification and salt stress response analysis of mungbean C3H and NBS transcription factor family members
作者:
刘金洋林云陈景斌闫强薛晨晨吴然然陈新袁星星
(江苏省农业科学院经济作物研究所/江苏省高效园艺作物遗传改良重点实验室,江苏南京210014)
Author(s):
LIU Jin-yangLIN YunCHEN Jing-binYAN QiangXUE Chen-chenWU Ran-ranCHEN XinYUAN Xing-xing
(Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences/Jiangsu Key Laboratory of Efficient Horticultural Crop Genetic Improvement, Nanjing 210014, China)
关键词:
绿豆NBS基因家族C3H基因家族盐胁迫VrNBS20转录因子
Keywords:
mungbeanNBS gene familyC3H gene familysalt stressVrNBS20 transcription factor
分类号:
Q786
DOI:
doi:10.3969/j.issn.1000-4440.2023.05.002
文献标志码:
A
摘要:
NBS和C3H是植物体内2个重要的转录因子家族,在调控植物抗病与耐盐方面不可或缺。本研究通过转录组数据分析、qRT-PCR分析,分别鉴定出30个和289个绿豆C3H和NBS家族成员,2个基因家族各有13个基因受到纯化选择,并且C3H和NBS基因家族种内共线性关系均为片段重复。耐盐材料的转录组数据分析结果表明,VrC3H5、VrC3H7、VrC3H10和VrC3H13等4个基因的表达量在盐胁迫后发生显著改变。VrC3H5,VrC3H7和VrC3H13 3个基因对脱落酸(ABA)处理、氯化钠(NaCl)处理、干旱胁迫都有不同程度的响应,VrC3H5在ABA处理后基因表达量上调超过了10倍。在NBS基因中,有85个基因在盐胁迫10 d和15 d后出现显著差异表达,其中9个NBS基因表达变化值|log2 FC|(FC为表达倍数变化)大于2。VrNBS20转录因子通过调控EVM0022385参与绿豆的耐盐功能,VrNBS20可能是绿豆抗病与耐盐调控网络中的交叉点。本研究结果为绿豆耐盐与抗病研究提供了丰富的基因资源。
Abstract:
NBS and C3H are two important transcription factor families in plants, which are indispensable in regulating plant disease resistance and salt tolerance. In this study, through transcriptome data analysis and qRT-PCR analysis, 30 and 289 mungbean C3H and NBS family members were identified, respectively. Thirteen C3H and 13 NBS genes were purified and selected, and the intraspecific collinearity analysis of C3H and NBS gene families was fragment duplication. The transcriptome data analysis of salt-tolerant materials showed that the expression levels of VrC3H5, VrC3H7, VrC3H10 and VrC3H13 were significantly changed after salt stress. VrC3H5, VrC3H7 and VrC3H13 had different degrees of response to abscisic acid (ABA) treatment, sodium chloride (NaCl) treatment and drought stress. The expression of VrC3H5 was up-regulated by more than 10 times after ABA treatment. A total of 85 NBS genes were significantly differentially expressed after 10 days and 15 days of salt stress, of which nine NBS genes had a change in expression value |log2 FC| (FC was the expression fold change) greater than two. VrNBS20 was involved in the salt tolerance function of mung bean by regulating EVM0022385, and VrNBS20 may be the intersection point in the disease resistance and salt tolerance regulatory network of mungbean. The results of this study provide abundant genetic resources for the study of salt tolerance and disease resistance of mungbean.

参考文献/References:

[1]KANG Y J, KIM S K, KIM M Y, et al. Genome sequence of mungbean and insights into evolution within Vigna species [J]. Nat Commun, 2014, 11(5): 5443-5452.
[2]李瑞国,郭少英,王怀远. 绿豆萌发期蛋白质和维生素C含量及营养价值[J]. 食品研究与开发, 2012, 33(4):4-12.
[3]王天一,王应祥,尤辰江. 植物PHD结构域蛋白的结构与功能特性[J]. 遗传,2021,43(4):323-339.
[4]TAMELING W I, ELZINGA S D, DARMIN P S, et al. The tomato R gene products I-2 and MI-1 are functional ATP binding proteins with ATPase activity [J]. Plant Cell, 2002, 14(11): 2929-2939.
[5]REBOLEDO G, AGORIO A, PONCE DE LEON I. Moss transcription factors regulating development and defense responses to stress [J]. J Exp Bot, 2022, 73(13): 4546-4561.
[6]ZHNAG Y M, CHEN M, SUN L, et al. Genome-wide identification and evolutionary analysis of NBS-LRR genes from dioscorea rotundata[J]. Frontiers in Genetics, 2020, 11:484-495.
[7]EITAS T K, DANGL J L. NB-LRR proteins: pairs, pieces, perception, partners, and pathways [J]. Curr Opin Plant Biol, 2010, 13(4): 472-477.
[8]汪结明,江海洋,赵阳,等. 玉米自交系B73全基因组NBS类型抗病基因分析[J]. 作物学报, 2009, 35(3): 5-10.
[9]刘云飞,万红建,李志邈,等. 植物NBS-LRR抗病基因的结构、功能、进化起源及其应用[J]. 分子植物育种, 2014, 12(2):377-389.
[10]ANDERSEN E J, LINDSEY L E, NEPAL M P. Genome-wide identification of disease resistance genes (R Genes) in wheat[J/OR]. Cold Spring Harbor Laboratory, 2020. Doi:10.401/2020.07.18.210286.
[11]JUPE F. The potato NB LRR gene family. Determination, characterisation and utilisation for rapid identification of novel disease resistance genes[D]. Norwich, England: University of East Anglia, 2012.
[12]LEISTER D. Tandem and segmental gene duplication and recombination in the evolution of plant disease resistance gene[J]. Trends in Genetics Tig, 2004, 20(3):116-122.
[13]ZHANG C, CHEN H, CAI T, et al. Overexpression of a novel peanut NBS-LRR gene AhRRS5 enhances disease resistance to Ralstonia solanacearum in tobacco [J]. Plant Biotechnol J, 2017, 15(1): 39-55.
[14]DIAO P, SUN H, BAO Z, et al. Expression of an antiviral gene GmRUN1 from soybean is regulated via Intron-mediated enhancement (IME) [J]. Viruses, 2021, 13(10):2032-2046
[15]JHU M Y, FARHI M, WANG L, et al. Heinz-resistant tomato cultivars exhibit a lignin-based resistance to field dodder (Cuscuta campestris) parasitism [J]. Plant Physiology, 2022, 189(1): 129-151.
[16]QU J, DRY I, LIU L, et al. Transcriptional profiling reveals multiple defense responses in downy mildew-resistant transgenic grapevine expressing a TIR-NBS-LRR gene located at the MrRUN1/MrRPV1 locus [J]. Horticulture Research, 2021, 8(1): 161-173.
[17]TENTE E, EREFUL N, RODRIGUEZ A C, et al. Reprogramming of the wheat transcriptome in response to infection with claviceps purpurea, the causal agent of ergot [J]. BMC Plant Biology, 2021, 21(1): 316-336.
[18]WANG D, GUO Y, WU C, et al. Genome-wide analysis of CCCH zinc finger family in Arabidopsis and rice [J]. BMC Genomics, 2008, 9(1): 44-64.
[19]DANIELS B R, PERKINS E M, DOBROWSKY T M, et al. Asymmetric enrichment of PIE-1 in the Caenorhabditis elegans zygote mediated by binary counterdiffusion [J]. Journal of Cell Biology, 2009, 184(4): 473-479.
[20]皮博艺,阮颖,黄勇. 植物串联CCCH锌指蛋白RR-TZF家族研究进展及生物信息学分析[J]. 分子植物育种, 2019, 17(7):2171-2177.
[21]蒋明,刘青娥,章燕如,等. 青花菜C3H型锌指蛋白基因BoCCCH2的克隆与表达[J]. 浙江大学学报(农业与生命科学版), 2016,42(2):143-149.
[22]KONG Z, LI M, YANG W, et al. A novel nuclear-localized CCCH-type zinc finger protein, OsDOS, is involved in delaying leaf senescence in rice[J]. Plant Physiology, 2006, 141(4):1376-1388.
[23]CHAI G H, KONG Y Z, ZHU M, et al. Arabidopsis C3H14 and C3H15 have overlapping roles in the regulation of secondary wall thickening and anther development.[J]. Journal of Experimental Botany, 2015, 66(9):2595-2609.
[24]SUN J, JIANG H, XU Y, et al. The CCCH-type zinc finger proteins AtSZF1 and AtSZF2 regulate salt stress responses in Arabidopsis[J]. Plant and Cell Physiology, 2007, 48(8): 1148-1158.
[25]ZHANG H, GAO X, ZHI Y, et al. A non-tandem CCCH-type zinc-finger protein, IbC3H18, functions as a nuclear transcriptional activator and enhances abiotic stress tolerance in sweet potato[J]. New Phytologist, 2019, 223(4):1918-1936.
[26]刘冬冬. 锌指蛋白GIS和ZFP5响应非生物胁迫的分子机理研究[D].杭州:浙江大学, 2019.
[27]HOANG X L T, NHI D N H, THU N B A, et al. Transcription factors and their roles in signal transduction in plants under abiotic stresses [J]. Current Genomics, 2017, 18(6): 483-497.
[28]LI Y, ZHOU J, LI Z, et al. Salt and ABA response ERF1 improves seed germination and salt tolerance by repressing ABA signaling in rice [J]. Plant Physiology, 2022, 189(2): 1110-1127.
[29]LIU J, XUE C, LIN Y, et al. Genetic analysis and identification of VrFRO8, a salt tolerance-related gene in mungbean [J]. Gene, 2022, 836:146658-146670.
[30]MORTAZAVI A, WILLIAMS B A, MCCUE K, et al. Mapping and quantifying mammalian transcriptomes by RNA-Seq[J]. Nat Methods,2008,5(7): 621-628.
[31]LI S, LIU J, XUE C, et al. Identification and functional characterization of WRKY, PHD and MYB three salt stress responsive gene families in mungbean (Vigna radiata L.) [J]. Genes (Basel),2023, 14(2): 463-481.
[32]潘晓雪,蒋晓英,胡明瑜,等. 水稻OsCCCH基因家族的组织表达谱及胁迫诱导表达特征研究[J]. 分子植物育种, 2016,14(9):2239-2249.
[33]吴学闯,曹新有,陈明,等. 大豆C3HC4型RING锌指蛋白基因GmRZFP1克隆与表达分析[J]. 植物遗传资源学报, 2010, 11(3):343-348
[34]郭栋,宋雅菲,张佳阔,等. 玉米CCCH基因家族鉴定及分析[J]. 中国农业科技导报, 2019, 21(8): 19-27.
[35]RUIZ-SOLA M A, ARBONA V, GOMEZ-CADENAS A, et al. A root specific induction of carotenoid biosynthesis contributes to ABA production upon salt stress in arabidopsis [J]. PLoS One, 2014, 9(3): e90765.
[36]BARRERO J M, RODRIGUEZ P L, QUESADA V, et al. Both abscisic acid (ABA)-dependent and ABA-independent pathways govern the induction of NCED3, AAO3 and ABA1 in response to salt stress [J]. Plant, Cell and Environment, 2006, 29(10): 2000-2008.
[37]NAKASHIMA K, SHINWARI Z K, SAKUMA Y, et al. Organization and expression of two Arabidopsis DREB2 genes encoding DRE-binding proteins involved in dehydration- and high-salinity-responsive gene expression [J]. Plant Molecular Biology, 2000, 42(4): 657-665.
[38]GONG Z, XIONG L, SHI H, et al. Plant abiotic stress response and nutrient use efficiency [J]. Science China(Life Sciences),2020, 63(5): 635-674.
[39]ZHAO H, LI Z, WANG Y, et al. Cellulose synthase-like protein OsCSLD4 plays an important role in the response of rice to salt stress by mediating abscisic acid biosynthesis to regulate osmotic stress tolerance [J]. Plant Biotechnol J, 2022, 20(3): 468-484.
[40]兰冬雪,汤丽影,李佳,等. 禾本科植物NBS-LRR类抗病基因结构,功能和进化研究进展[J]. 中国农学通报, 2019,35(15):124-127.
[41]NAVARRO L, ZIPFEL C, ROWLAND O, et al. The transcriptional innate immune response to flg22. interplay and overlap with Avr gene-dependent defense responses and bacterial pathogenesis[J]. Plant Physiology, 2004, 135(2): 1113-1128.

相似文献/References:

[1]李阳,袁娜,刘大亮,等.绿豆Copia类反转座子全基因组注释及进化分析[J].江苏农业学报,2020,(04):858.[doi:doi:10.3969/j.issn.1000-4440.2020.04.008]
 LI Yang,YUAN Na,LIU Da-liang,et al.Annotation and evolutionary analysis of the Copia retrotransposons in mung bean[J].,2020,(05):858.[doi:doi:10.3969/j.issn.1000-4440.2020.04.008]
[2]李灵慧,吴然然,陈景斌,等.基于PARMS技术的绿豆抗叶斑病基因VrTAF5分子标记的开发[J].江苏农业学报,2021,(06):1386.[doi:doi:10.3969/j.issn.1000-4440.2021.05.004]
 LI Ling-hui,WU Ran-ran,CHEN Jing-bin,et al.Development of molecular markers of mung bean leaf spot disease resistance gene VrTAF5 based on PARMS technology[J].,2021,(05):1386.[doi:doi:10.3969/j.issn.1000-4440.2021.05.004]
[3]周旭旭,刘金洋,陈新,等.绿豆Alfin1-like基因家族的鉴定与干旱胁迫下的表达分析[J].江苏农业学报,2022,38(05):1179.[doi:doi:10.3969/j.issn.1000-4440.2022.05.004]
 ZHOU Xu-xu,LIU Jin-yang,CHEN Xin,et al.Identification of Alfin1-like gene family in Vigna radiata (L.) Wilczek and its expression analysis under drought stress[J].,2022,38(05):1179.[doi:doi:10.3969/j.issn.1000-4440.2022.05.004]
[4]叶卫军,吴泽江,田东丰,等.绿豆窄叶突变体vrnl9基因的精细定位与转录组分析[J].江苏农业学报,2024,(02):203.[doi:doi:10.3969/j.issn.1000-4440.2024.02.002]
 YE Wei-jun,WU Ze-jiang,TIAN Dong-feng,et al.Fine mapping and transcriptome analysis of a narrow leaf mutant gene vrnl9 in mungbean[J].,2024,(05):203.[doi:doi:10.3969/j.issn.1000-4440.2024.02.002]

备注/Memo

备注/Memo:
收稿日期:2022-11-29 基金项目:科学技术部重点研发政府间国际合作项目(2019YFE0109100);江苏省一带一路国际合作项目(BZ2022005);国家食用豆产业技术体系项目(CARS-08-G15);江苏省种业揭榜挂帅项目[JBGS(2021)004];国家自然科学基金项目(32200499);江苏省林业科技创新与推广项目[LYKJ(2021)22] 作者简介:刘金洋(1988-),男,安徽亳州人,博士,助理研究员,主要从事豆类作物分子育种研究。(E-mail)20200024@jaas.ac.cn 通讯作者:陈新,(E-mail)cx@jaas.ac.cn;袁星星,(E-mail)yxx@jaas.ac.cn
更新日期/Last Update: 2023-09-13