参考文献/References:
[1]KANG Y J, KIM S K, KIM M Y, et al. Genome sequence of mungbean and insights into evolution within Vigna species [J]. Nat Commun, 2014, 11(5): 5443-5452.
[2]李瑞国,郭少英,王怀远. 绿豆萌发期蛋白质和维生素C含量及营养价值[J]. 食品研究与开发, 2012, 33(4):4-12.
[3]王天一,王应祥,尤辰江. 植物PHD结构域蛋白的结构与功能特性[J]. 遗传,2021,43(4):323-339.
[4]TAMELING W I, ELZINGA S D, DARMIN P S, et al. The tomato R gene products I-2 and MI-1 are functional ATP binding proteins with ATPase activity [J]. Plant Cell, 2002, 14(11): 2929-2939.
[5]REBOLEDO G, AGORIO A, PONCE DE LEON I. Moss transcription factors regulating development and defense responses to stress [J]. J Exp Bot, 2022, 73(13): 4546-4561.
[6]ZHNAG Y M, CHEN M, SUN L, et al. Genome-wide identification and evolutionary analysis of NBS-LRR genes from dioscorea rotundata[J]. Frontiers in Genetics, 2020, 11:484-495.
[7]EITAS T K, DANGL J L. NB-LRR proteins: pairs, pieces, perception, partners, and pathways [J]. Curr Opin Plant Biol, 2010, 13(4): 472-477.
[8]汪结明,江海洋,赵阳,等. 玉米自交系B73全基因组NBS类型抗病基因分析[J]. 作物学报, 2009, 35(3): 5-10.
[9]刘云飞,万红建,李志邈,等. 植物NBS-LRR抗病基因的结构、功能、进化起源及其应用[J]. 分子植物育种, 2014, 12(2):377-389.
[10]ANDERSEN E J, LINDSEY L E, NEPAL M P. Genome-wide identification of disease resistance genes (R Genes) in wheat[J/OR]. Cold Spring Harbor Laboratory, 2020. Doi:10.401/2020.07.18.210286.
[11]JUPE F. The potato NB LRR gene family. Determination, characterisation and utilisation for rapid identification of novel disease resistance genes[D]. Norwich, England: University of East Anglia, 2012.
[12]LEISTER D. Tandem and segmental gene duplication and recombination in the evolution of plant disease resistance gene[J]. Trends in Genetics Tig, 2004, 20(3):116-122.
[13]ZHANG C, CHEN H, CAI T, et al. Overexpression of a novel peanut NBS-LRR gene AhRRS5 enhances disease resistance to Ralstonia solanacearum in tobacco [J]. Plant Biotechnol J, 2017, 15(1): 39-55.
[14]DIAO P, SUN H, BAO Z, et al. Expression of an antiviral gene GmRUN1 from soybean is regulated via Intron-mediated enhancement (IME) [J]. Viruses, 2021, 13(10):2032-2046
[15]JHU M Y, FARHI M, WANG L, et al. Heinz-resistant tomato cultivars exhibit a lignin-based resistance to field dodder (Cuscuta campestris) parasitism [J]. Plant Physiology, 2022, 189(1): 129-151.
[16]QU J, DRY I, LIU L, et al. Transcriptional profiling reveals multiple defense responses in downy mildew-resistant transgenic grapevine expressing a TIR-NBS-LRR gene located at the MrRUN1/MrRPV1 locus [J]. Horticulture Research, 2021, 8(1): 161-173.
[17]TENTE E, EREFUL N, RODRIGUEZ A C, et al. Reprogramming of the wheat transcriptome in response to infection with claviceps purpurea, the causal agent of ergot [J]. BMC Plant Biology, 2021, 21(1): 316-336.
[18]WANG D, GUO Y, WU C, et al. Genome-wide analysis of CCCH zinc finger family in Arabidopsis and rice [J]. BMC Genomics, 2008, 9(1): 44-64.
[19]DANIELS B R, PERKINS E M, DOBROWSKY T M, et al. Asymmetric enrichment of PIE-1 in the Caenorhabditis elegans zygote mediated by binary counterdiffusion [J]. Journal of Cell Biology, 2009, 184(4): 473-479.
[20]皮博艺,阮颖,黄勇. 植物串联CCCH锌指蛋白RR-TZF家族研究进展及生物信息学分析[J]. 分子植物育种, 2019, 17(7):2171-2177.
[21]蒋明,刘青娥,章燕如,等. 青花菜C3H型锌指蛋白基因BoCCCH2的克隆与表达[J]. 浙江大学学报(农业与生命科学版), 2016,42(2):143-149.
[22]KONG Z, LI M, YANG W, et al. A novel nuclear-localized CCCH-type zinc finger protein, OsDOS, is involved in delaying leaf senescence in rice[J]. Plant Physiology, 2006, 141(4):1376-1388.
[23]CHAI G H, KONG Y Z, ZHU M, et al. Arabidopsis C3H14 and C3H15 have overlapping roles in the regulation of secondary wall thickening and anther development.[J]. Journal of Experimental Botany, 2015, 66(9):2595-2609.
[24]SUN J, JIANG H, XU Y, et al. The CCCH-type zinc finger proteins AtSZF1 and AtSZF2 regulate salt stress responses in Arabidopsis[J]. Plant and Cell Physiology, 2007, 48(8): 1148-1158.
[25]ZHANG H, GAO X, ZHI Y, et al. A non-tandem CCCH-type zinc-finger protein, IbC3H18, functions as a nuclear transcriptional activator and enhances abiotic stress tolerance in sweet potato[J]. New Phytologist, 2019, 223(4):1918-1936.
[26]刘冬冬. 锌指蛋白GIS和ZFP5响应非生物胁迫的分子机理研究[D].杭州:浙江大学, 2019.
[27]HOANG X L T, NHI D N H, THU N B A, et al. Transcription factors and their roles in signal transduction in plants under abiotic stresses [J]. Current Genomics, 2017, 18(6): 483-497.
[28]LI Y, ZHOU J, LI Z, et al. Salt and ABA response ERF1 improves seed germination and salt tolerance by repressing ABA signaling in rice [J]. Plant Physiology, 2022, 189(2): 1110-1127.
[29]LIU J, XUE C, LIN Y, et al. Genetic analysis and identification of VrFRO8, a salt tolerance-related gene in mungbean [J]. Gene, 2022, 836:146658-146670.
[30]MORTAZAVI A, WILLIAMS B A, MCCUE K, et al. Mapping and quantifying mammalian transcriptomes by RNA-Seq[J]. Nat Methods,2008,5(7): 621-628.
[31]LI S, LIU J, XUE C, et al. Identification and functional characterization of WRKY, PHD and MYB three salt stress responsive gene families in mungbean (Vigna radiata L.) [J]. Genes (Basel),2023, 14(2): 463-481.
[32]潘晓雪,蒋晓英,胡明瑜,等. 水稻OsCCCH基因家族的组织表达谱及胁迫诱导表达特征研究[J]. 分子植物育种, 2016,14(9):2239-2249.
[33]吴学闯,曹新有,陈明,等. 大豆C3HC4型RING锌指蛋白基因GmRZFP1克隆与表达分析[J]. 植物遗传资源学报, 2010, 11(3):343-348
[34]郭栋,宋雅菲,张佳阔,等. 玉米CCCH基因家族鉴定及分析[J]. 中国农业科技导报, 2019, 21(8): 19-27.
[35]RUIZ-SOLA M A, ARBONA V, GOMEZ-CADENAS A, et al. A root specific induction of carotenoid biosynthesis contributes to ABA production upon salt stress in arabidopsis [J]. PLoS One, 2014, 9(3): e90765.
[36]BARRERO J M, RODRIGUEZ P L, QUESADA V, et al. Both abscisic acid (ABA)-dependent and ABA-independent pathways govern the induction of NCED3, AAO3 and ABA1 in response to salt stress [J]. Plant, Cell and Environment, 2006, 29(10): 2000-2008.
[37]NAKASHIMA K, SHINWARI Z K, SAKUMA Y, et al. Organization and expression of two Arabidopsis DREB2 genes encoding DRE-binding proteins involved in dehydration- and high-salinity-responsive gene expression [J]. Plant Molecular Biology, 2000, 42(4): 657-665.
[38]GONG Z, XIONG L, SHI H, et al. Plant abiotic stress response and nutrient use efficiency [J]. Science China(Life Sciences),2020, 63(5): 635-674.
[39]ZHAO H, LI Z, WANG Y, et al. Cellulose synthase-like protein OsCSLD4 plays an important role in the response of rice to salt stress by mediating abscisic acid biosynthesis to regulate osmotic stress tolerance [J]. Plant Biotechnol J, 2022, 20(3): 468-484.
[40]兰冬雪,汤丽影,李佳,等. 禾本科植物NBS-LRR类抗病基因结构,功能和进化研究进展[J]. 中国农学通报, 2019,35(15):124-127.
[41]NAVARRO L, ZIPFEL C, ROWLAND O, et al. The transcriptional innate immune response to flg22. interplay and overlap with Avr gene-dependent defense responses and bacterial pathogenesis[J]. Plant Physiology, 2004, 135(2): 1113-1128.
相似文献/References:
[1]李阳,袁娜,刘大亮,等.绿豆Copia类反转座子全基因组注释及进化分析[J].江苏农业学报,2020,(04):858.[doi:doi:10.3969/j.issn.1000-4440.2020.04.008]
LI Yang,YUAN Na,LIU Da-liang,et al.Annotation and evolutionary analysis of the Copia retrotransposons in mung bean[J].,2020,(05):858.[doi:doi:10.3969/j.issn.1000-4440.2020.04.008]
[2]李灵慧,吴然然,陈景斌,等.基于PARMS技术的绿豆抗叶斑病基因VrTAF5分子标记的开发[J].江苏农业学报,2021,(06):1386.[doi:doi:10.3969/j.issn.1000-4440.2021.05.004]
LI Ling-hui,WU Ran-ran,CHEN Jing-bin,et al.Development of molecular markers of mung bean leaf spot disease resistance gene VrTAF5 based on PARMS technology[J].,2021,(05):1386.[doi:doi:10.3969/j.issn.1000-4440.2021.05.004]
[3]周旭旭,刘金洋,陈新,等.绿豆Alfin1-like基因家族的鉴定与干旱胁迫下的表达分析[J].江苏农业学报,2022,38(05):1179.[doi:doi:10.3969/j.issn.1000-4440.2022.05.004]
ZHOU Xu-xu,LIU Jin-yang,CHEN Xin,et al.Identification of Alfin1-like gene family in Vigna radiata (L.) Wilczek and its expression analysis under drought stress[J].,2022,38(05):1179.[doi:doi:10.3969/j.issn.1000-4440.2022.05.004]
[4]叶卫军,吴泽江,田东丰,等.绿豆窄叶突变体vrnl9基因的精细定位与转录组分析[J].江苏农业学报,2024,(02):203.[doi:doi:10.3969/j.issn.1000-4440.2024.02.002]
YE Wei-jun,WU Ze-jiang,TIAN Dong-feng,et al.Fine mapping and transcriptome analysis of a narrow leaf mutant gene vrnl9 in mungbean[J].,2024,(05):203.[doi:doi:10.3969/j.issn.1000-4440.2024.02.002]