参考文献/References:
[1]周国逸,熊鑫. 土壤有机碳形成机制的探索历程[J]. 热带亚热带植物学报, 2019, 27(5): 481-490.
[2]KALISZ B, LACHACE A, GLAZEWSKI R, et al. Labile organic carbon fractions after amendment of sandy soil with municipal sewage sludge and compost[J]. Journal of Elementology, 2017, 22(3): 785-797.
[3]何伟,王会,韩飞,等. 长期施用有机肥显著提升潮土有机碳组分[J]. 土壤学报, 2020, 57(2): 425-434.
[4]杨丽韫,罗天祥,吴松涛.长白山原始阔叶红松林不同演替阶段地下生物量与碳、氮贮量的比较[J].应用生态学报, 2005, 16(7): 1195-1199.
[5]LEFROY R D B, BLAIR G J, STRONG W M. Changes in soil organic matter with cropping as measured by organic carbon fractions and 13C natural isotope abundance[J]. Plant and Soil, 1993, 155/156(1): 399-402.
[6]金宝石,闫鸿远,王维奇,等. 互花米草入侵下湿地土壤碳氮磷变化及化学计量学特征[J]. 应用生态学报, 2017, 28(5): 1541-1549.
[7]GUO Q, ZHU G, CHEN T, et al. Spatial variation and environmental assessment of soil organic carbon isotopes for tracing sources in a typical contaminated site[J]. Journal of Geochemical Exploration, 2017, 175:11-17.
[8]CARROLL R, REYNOLDS J K, WRIGHT I A. Geochemical signature of urbanisation in Blue Mountains upland swamps[J]. The Science of the Total Environment, 2020, 699:134393.1-134393.12.
[9]李虹,冯仲科,唐秀美,等. 区位因素对绿地降低热岛效应的影响[J]. 农业工程学报, 2016, 32(增刊2): 316-322.
[10]ZHAO Y G, ZHANG G L, ZEP H, et al. Establishing a spatial grouping base for surface soil properties along urban-rural gradient——A case study in Nanjing, China[J]. Catena, 2007, 69(1): 74-81.
[11]方文. 基于不同空间尺度的重庆都市圈城市森林生态网络与群落特征研究[D]. 重庆: 西南大学, 2020.
[12]MCDONNELL M J, PICKETT S T A. The study of ecosystem structure and function along urban-rural gradients: an unexploited opportunity for ecology[J]. Ecology,1990, 71(4): 1232-1237.
[13]张雪莹,陈小梅,危晖,等. 城市化对珠江三角洲存留常绿阔叶林土壤有机碳组分及其碳库管理指数的影响[J]. 水土保持学报, 2017, 31(4): 184-190.
[14]丁明军,王敏,张华. 南昌快速城市化过程对环境多介质有机碳含量的影响[J]. 环境科学学报, 2017, 37(6): 2307-2314.
[15]KOERNER B A, KLOPATEK J M. Carbon fluxes and nitrogen availability along an urban-rural gradient in a desert landscape[J]. Urban Ecosystems, 2010, 13(1): 1-21.
[16]谢天,侯鹰,陈卫平. 城市化对土壤生态环境的影响研究进展[J]. 生态学报, 2019, 39(4): 33-43.
[17]BLAIR G J, LEFROY R D B, LISLE L. Soil carbon fractions based on their degree of oxidation, and the development of a carbon management index for agricultural systems[J]. Australian Journal of Agricultural Research, 1995, 46(7): 1459-1466.
[18]FRANZLUEBBERS A J, ARSHAD M A. Particulate organic carbon content and potential mineralization as affected by tillage and texture[J]. Soil Science Society of America Journal, 1997, 61(5): 1382-1386.
[19]BLAIR G J, LEFROY R D B, LISLE L. Soil carbon fractions based on their degree of oxidation, and the development of a carbon management index for agricultural systems [J]. Australian Journal of Agricultural Research, 1995, 46(7): 1459-1466.
[20]张云云. 模拟气候变暖对高寒泥炭湿地碳稳定性的影响及机制研究[D]. 北京: 北京林业大学, 2019.
[21]GOMEZ E J, DELGADO J A, GONZALEZ J M. Environmental factors affect the response of microbial extracellular enzyme activity in soils when determined as a function of water availability and temperature[J]. Ecology and Evolution, 2020, 10(18):1-11.
[22]MUDGE P L, SCHIPPER L A, BAISDEN W T, et al. Changes in soil C, N and δ15N along three forest-pasture chronosequences in New Zealand[J]. Soil Research, 2014, 52(1): 27-37.
[23]程淑兰,方华军,徐梦,等. 氮沉降增加情景下植物-土壤-微生物交互对自然生态系统土壤有机碳的调控研究进展[J]. 生态学报, 2018, 38(23): 8285-8295.
[24]JANSSENS I A, DIELEMAN W, LUYSSAERT S. Reduction of forest soil respiration in response to nitrogen deposition[J]. Nature Geoscience, 2010, 3(5): 315-322.
[25]BLAGODATSKAYA E V, BLAGODATSKAY S A, ANDERSON T H, et al. Priming effects of Chernozem induced by glucose and N in relation to microbial growth strategies[J]. Applied Soil Ecology, 2007, 37(1/2): 95-105.
[26]谢国雄,楼旭平,阮弋飞,等. 浙江省农田土壤碳氮比特征及影响因素分析[J]. 江西农业学报, 2020, 32(2): 51-55.
[27]张哲,王邵军,李霁航,等. 土壤易氧化有机碳对西双版纳热带森林群落演替的响应[J]. 生态学报, 2019, 39(17): 6257-6263.
[28]牟凌,张丽,陈子豪,等. 四川盆地西缘4种人工林土壤有机碳组分特征[J].甘肃农业大学学报,2020,55(3):121-126,133.
[29]郝江勃,乔枫,蔡子良. 亚热带常绿阔叶林土壤活性有机碳组分季节动态特征[J]. 生态环境学报, 2019, 28(2): 245-251.
[30]魏强. 亚热带典型森林凋落物输入对土壤有机碳累积和稳定性影响[D]. 福州: 福建农林大学, 2018.
[31]马南,陈智文,张清.不同类型秸秆还田对土壤有机碳及酶活性的影响综述[J].江苏农业科学,2021,49(3):53-57.
[32]陈仕林,蒙炎成,胡钧铭,等. 秸秆覆盖对粉垄蔗田土壤有机碳及CO2排放的影响[J].南方农业学报,2021,52(2):307-316.
[33]POUYAT R, GROFFMAN P, YESILONIS I. Soil carbon pools and fluxes in urban ecosystems[J]. Environmental Pollution, 2002, 116: S107-S118.
[34]WALKER X J, MACK M C, JOHNSTONE J F. Stable carbon isotope analysis reveals widespread drought stress in boreal black spruce forests[J]. Global Change Biology, 2015, 21(8): 3102-3113.
[35]池鑫晨,宋超,朱向涛,等. 毛竹入侵常绿阔叶林对土壤活性有机碳氮的动态影响[J]. 生态学杂志, 2020, 39(7): 2263-2272.
[36]郑裕雄,曹际玲,杨智杰,等. 米槠天然林和桔园土壤微生物群落结构的季节性变化[J]. 生态环境学报, 2019, 28(10): 1991-1998.
[37]辜翔,张仕吉,项文化,等. 中亚热带4种森林类型土壤活性有机碳的季节动态特征[J]. 植物生态学报, 2016, 40(10): 1064-1076.
[38]XU X N, ENOKI T, HIRATA E, et al. Pattern and chemical composition of fine litterfall in a subtropical forest in northern Okinawa Island, Japan [J]. Basic and Applied Ecology, 2003, 4(3): 229-237.
[39]JING G, Bo W, GUIBIN W, et al. Vertical and seasonal variations of soil carbon pools in ginkgo agroforestry systems in eastern China[J]. Catena, 2018, 171: 450-459.
[40]TEWKSBURY C E, MIEGROET H V. Soil organic carbon dynamics along a climatic gradient in a southern Appalachian spruce-fir forest[J]. Canadian Journal of Forest Research, 2007, 37(7): 1161-1172.
[41]滕臻,曹小青,孙孟瑶,等. 不同生态恢复模式对巢湖湖滨湿地土壤活性碳库及其管理指数的影响[J]. 生态环境学报, 2019, 28(4): 752-760.
[42]闫丽娟,李广,吴江琪,等. 黄土高原4种典型植被对土壤活性有机碳及土壤碳库的影响[J]. 生态学报, 2019, 39(15): 5546-5554.
[43]陶晓,俞元春,张云彬,等. 城市森林土壤碳氮磷含量及其生态化学计量特征[J]. 生态环境学报, 2020, 29(1): 88-96.