[1]吕广德,殷复伟,王超,等.不同播种量对小麦泰科麦33干物质积累转运、旗叶光合特性及产量构成的影响[J].江苏农业学报,2021,(01):16-28.[doi:doi:10.3969/j.issn.1000-4440.2021.01.003]
 LYU Guang-de,YIN Fu-wei,WANG Chao,et al.Effects of sowing amounts on dry matter accumulation and distribution, photosynthetic characteristics of flag leaves and yield composition of wheat TKM 33[J].,2021,(01):16-28.[doi:doi:10.3969/j.issn.1000-4440.2021.01.003]
点击复制

不同播种量对小麦泰科麦33干物质积累转运、旗叶光合特性及产量构成的影响()
分享到:

江苏农业学报[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2021年01期
页码:
16-28
栏目:
遗传育种·生理生化
出版日期:
2021-02-28

文章信息/Info

Title:
Effects of sowing amounts on dry matter accumulation and distribution, photosynthetic characteristics of flag leaves and yield composition of wheat TKM 33
作者:
吕广德1殷复伟2王超1李宁3钱兆国1吴科1
(1.泰安市农业科学研究院,山东泰安271000;2.泰安市农业技术推广站,山东泰安271000;3.泰安市禾元种业科技有限公司,山东泰安271000)
Author(s):
LYU Guang-de1YIN Fu-wei2WANG Chao1LI Ning3QIAN Zhao-guo1WU Ke1
(1.Tai’an Academy of Agricultural Sciences,Tai’an 271000,China;2.Tai’an Agricultural Technology Promotion Station,Tai’an 271000, China;3.Tai’an Heyuan Seed Technology Co., Ltd, Tai’an 271000,China)
关键词:
小麦泰科麦33播种量干物质光合产量
Keywords:
wheatTKM33sowing amountsdry matterphotosyntheticyield
分类号:
S512.1+10.42
DOI:
doi:10.3969/j.issn.1000-4440.2021.01.003
文献标志码:
A
摘要:
于2016-2019年小麦生长季进行小麦品种泰科麦33的田间播种量试验,2016-2017年播种量为75 kg/hm2(SA1)、150 kg/hm2(SA2)、225 kg/hm2(SA3)、300 kg/hm2(SA4)、375 kg/hm2(SA5)5个水平,2017-2018和2018-2019两个小麦生长季调整播种量为75.0 kg/hm2(SA6)、112.5 kg/hm2(SA7)、150.0 kg/hm2(SA8)、187.5 kg/hm2(SA9)、225.0 kg/hm2(SA10)5个水平,同时在2018-2019年重复2016-2017年的试验。测定不同播种量条件下泰科麦33生育阶段的干物质累积量,并根据干物质累积量分析生物量积累特征以及开花前后干物质转运特性;通过测定开花后旗叶的蒸腾速率、气孔导度和净光合速率,分析不同播种量条件下泰科麦33的光合作用差异;对不同播种量条件下泰科麦33籽粒产量和产量结构的差异进行分析。结果表明,在所有播种量条件下,开花前干物质累积量高于开花后干物质累积量,但对籽粒贡献率却低于开花后;在SA1~SA5处理中,与SA1、SA3、SA4、SA5相比,SA2的干物质累积量显著提高,2016-2017年分别提高了5.9%、1.6%、8.6%、9.7%,2018-2019年分别提高了6.5%、1.5%、11.5%、13.6%;在SA6~SA10处理中,2017-2018年干物质累积量SA9处理最高,为14 779.17 kg/hm2,2018-2019年SA8处理最高为17 405.25 kg/hm2。不同播种量下泰科麦33干物质积累动态曲线均符合 Logistic 模型,在SA1~SA5处理中,两年干物质最大积累速率(Vm)均出现在SA2处理,与各处理平均值相比,干物质最大累积量分别提高了4.1%和6.7%, 快速累积持续时间虽然分别缩短了7.6 d和6.1 d,但最大累积速率分别提升了14.9%和15.6%;SA6~SA10处理中,2017-2018年SA9处理的干物质最大积累速率最高,与各处理平均值相比,干物质最大累积量提高了7.4%, 快速累积持续时间延长了0.8 d,最大累积速率提升了0.6%;2018-2019年,干物质最大累积量出现在SA8处理,与各处理平均值相比,干物质最大累积量提高了5.2%, 快速累积持续时间虽然缩短了1.8 d,但最大累积速率提升了7.9%。在所有播种量条件下,泰科麦33旗叶净光合速率和气孔导度均在开花后7 d达到最高,蒸腾速率在开花后14 d最高;SA1~SA5处理中,两年SA1处理的蒸腾速率比其他处理的平均值分别高9.1%和9.2%,气孔导度分别高15.0%和14.0%,净光合速率分别高15.1%和12.3%;SA6~SA10处理中,SA6处理在花后的蒸腾速率高于其他处理的平均值9.2%,气孔导度高17.3%,净光合速率高11.8%。但在SA1~SA3处理间旗叶光合参数差异不显著,SA6~SA10处理中SA6~SA8处理间差异也不显著。在SA1~SA5处理中,各处理籽粒产量的大小顺序为SA2>SA3>SA1>SA4>SA5,SA2两年产量分别为9 545.05 kg/hm2和9 439.50 kg/hm2。在SA6~SA10处理中,2017-2018年各播种量处理产量的大小顺序为SA9>SA8>SA10>SA7>SA6,SA9的产量为8 342.55 kg/hm2,2018-2019年各处理的产量顺序为SA8>SA9>SA7>SA10>SA6,SA8的产量为9 287.95 kg/hm2。通过拟合泰科麦33播种量与产量之间的方程曲线发现,在 SA1~SA5处理下产量达到理论最大值时最佳播种量两年分别为179.16 kg/hm2和 159.70 kg/hm2;在SA6~SA10处理下2017-2018年播种量为188.96 kg/hm2时产量最大,而2018-2019年播种量为153.70 kg/hm2时产量最大。以上分析结果说明,优质小麦新品种泰科麦33在播种量153.70~188.96 kg/hm2条件下产量、干物质累积量和光合速率最高。
Abstract:
Sowing amount test of wheat variety TKM33 was carried out in wheat growing season during 2016-2019. The sowing amount in 2016-2017 was set in five levels containing 75 kg/hm2 (SA1), 150 kg/hm2 (SA2), 225 kg/hm2 (SA3), 300 kg/hm2 (SA4) and 375 kg/hm2 (SA5). In two wheat growing seasons of 2017-2018 and 2018-2019, the sowing amounts were adjusted to five levels containing 75.0 kg/hm2 (SA6), 112.5 kg/hm2 (SA7), 150.0 kg/hm2 (SA8), 187.5 kg/hm2 (SA9) and 225.0 kg/hm2 (SA10). The sowing amount test in 2018-2019 was conducted based on repeating the test in 2016-2017. Dry matter accumulation of TKM33 was measured at growth stage under conditions of different sowing amounts. Biomass accumulation characteristics and transport characteristics of dry matter before and after flowering were analyzed based on the dry matter accumulation. Differences of photosynthesis of TKM33 under different sowing amounts conditions were analyzed by determining the transpiration rate, stomatal conductivity and net photosynthetic rate of flag leaves after flowering. The differences of grain yield and yield structure of TKM33 under different sowing amounts conditions were analyzed. The results showed that under conditions of all sowing amounts, the dry matter accumulation before flowering was higher than that after flowering, but the contribution rate to grain before flowering was lower than that after flowering. In SA1-SA5 treatments, the dry matter accumulation of SA2 increased significantly compared with that of SA1, SA3, SA4 and SA5, which increased 5.9%, 1.6%, 8.6% and 9.7% respectively in 2016-2017 and increased 6.5%, 1.5%, 11.5% and 13.6% respectively in 2018-2019. In SA6-SA10 treatments, the dry matter accumulation in 2017-2018 was the highest under SA9 treatment, which was 14 779.17 kg/hm2, but the highest value in 2018-2019 was under SA8 trearment, which was 17 405.25 kg/hm2. The dynamic curve of dry matter accumulation under different sowing amounts all conformed to the Logistic model. In SA1-SA5 treatments, the largest dry matter accumulation rate (Vm) of two years all appeared in SA2 treatment, the largest dry matter accumulation increased by 4.1% and 6.7% compared with the average value of all treatments, although rapid accumulation duration shortened by 7.6 days and 6.1 days respectively, but the largest accumulation rate increased by 14.9% and 15.6% respectively. The max accumulation rate of dry matter was the highest in SA9 treatment among SA6-SA10 treatments in 2017-2018. Compared with the average value of all treatments, the max accumulation of dry matter in SA9 treatment increased by 7.4%, the duration of rapid accumulation increased by 0.8 day, and the max accumulation rate increased by 0.6%. In 2018-2019, the max accumulation of dry matter appeared in SA8 treatment. Compared with the average value of each treatment, the max accumulation of dry matter increased by 5.2%, the rapid accumulation duration decreased by 1.8 days, although the max accumulation rate increased by 7.9%. Under all sowing amounts conditions, the net photosynthetic rate and stomatal conductance of flag leaves of TKM33 all reached the highest values seven days after flowering, and the transpiration rate reached the highest value 14 days after flowering. In SA1-SA5 treatments, the transpiration rate of SA1 treatment during the two years was 9.1% and 9.2% higher than the average value of other treatments, the stomatal conductance was 15.0% and 14.0% higher, and the net photosynthetic rate was 15.1% and 12.3% higher respectively. In SA6-SA10 treatments, the transpiration rate of SA6 treatment after flowering was 9.2% higher than the average value of other treatments, the stomatal conductance increased by 17.3% and the net photosynthetic rate increased by 11.8%. However, there was no significant difference in photosynthetic parameters of flag leaves between SA1-SA3 treatments and between SA6-SA8 treatments within SA6-SA10 treatments. In SA1-SA5 treatments, the grain yield showed the trend of SA2>SA3>SA1>SA4>SA5, and the yield of SA2 treatment in two years was 9 545.05 kg/hm2 and 9 439.50 kg/hm2 respectively. In SA6-SA10 treatments, the yields of all sowing amouts treatments showed the trend of SA9>SA8>SA10>SA7>SA6 in 2017-2018, and the yield of SA9 was 8 342.55 kg/hm2. In 2018-2019, the yields of all treatments showed the trend of SA8>SA9>SA7>SA10>SA6, and the yield of SA8 was 9 287.95 kg/hm2. By fitting the equation curve between sowing amount and yield of TKM33, it was found that the theoretical optimal sowing amount in two years was 179.16 kg/hm2 and 159.70 kg/hm2 respectively when the theoretical max yield was reached under SA1-SA5 treatments. Under the treatments of SA6-SA10, the max yield appeared when the sowing amount was 188.96 kg/hm2 in 2017-2018, and in 2018-2019 the max yield was got when the sowing amount was 153.70 kg/hm2. The above analysis result indicated that, the high-quality new wheat variety TKM33 showed the best yield, dry matter accumulation and photosynthetic rate under the sowing amount of 153.70-188.96 kg/hm2.

参考文献/References:

[1]石江荣, 任永康, 王 芳. 氮素营养对超高产小麦调控的研究进展[J]. 山西农业科学,2010, 38(3): 80-82.
[2]TOKATLIDIS I S. Addressing the yield by density interaction is a prerequisite to bridge the yield gap of rain-fed wheat[J]. Annals of Applied Biology, 2014, 165: 27-42.
[3]DAI X L, ZHOU X H, JIA D Y, et al. Managing the seeding rate to improve nitrogen-use efficiency of winter wheat[J]. Field Crops Research, 2013, 154: 100-109.
[4]姜东,于振文,李永庚,等. 高产小麦营养器官临时贮存物质积运及其对粒重的贡献[J]. 作物学报, 2003, 29(1): 31-36.
[5]刘丽平,胡焕焕,李瑞奇,等. 行距配置和密度对冬小麦品种河农 822 群体质量及产量的影响[J].华北农学报, 2008, 23(2): 125-131.
[6]李宁,段留生,李建民,等. 播期与密度组合对不同穗型小麦品种花后旗叶光合特性、籽粒库容能力及产量的影响[J].麦类作物学报, 2010, 30(2): 296-302.
[7]蒋会利. 播期密度对不同小麦品种群体茎数及产量的影响[J]. 西北农业学报, 2012, 21(6): 67-73.
[8]姜东,谢祝捷,曹卫星,等. 花后干旱和渍水对冬小麦光合特性和物质运转的影响[J]. 作物学报, 2004, 30(2): 175-182.
[9]赵姣,郑志芳,方艳茹,等. 基于动态模拟模型分析冬小麦干物质积累特征对产量的影响[J]. 作物学报, 2013, 39(2): 300-308.
[10]郭培武,赵俊晔,石玉,等. 水肥一体化对小麦水分利用和光合特性的影响[J]. 应用生态学报, 2019, 30(4): 1170-1178.
[11]张维城,王志和,任永信,等. 有效分蘖终止期控制措施对小麦群体质量影响的研究[J]. 作物学报, 1998, 24(6): 903-907.
[12]田中伟,王方瑞,戴廷波,等. 小麦品种改良过程中物质积累转运特性与产量的关系[J]. 中国农业科学, 2012, 45(4):801-808.
[13]HILTBRUNNER J, STREIT B, LIEDGENS M. Are seeding densities an opportunity to increase grain yield of winter wheat in a living mulch of white clover[J]. Field Crops Research, 2007, 102: 163-171.
[14]张敏,王岩岩,蔡瑞国,等. 播期推迟对冬小麦产量形成和籽粒品质的调控效应[J]. 麦类作物学报, 2013, 33(2):325-330.
[15]胡卫丽,王永华,李刘霞,等. 氮密调控对两种穗型冬小麦品种茎蘖干物质积累与转运的影响[J]. 麦类作物学报, 2014, 34(6): 808-815.
[16]李世清,邵明安,李紫燕,等. 小麦籽粒灌浆特征及影响因素的研究进展[J]. 西北植物学报, 2003, 23(11): 2031-2039.
[17]牟会荣,姜东,戴廷波,等. 遮荫对小麦旗叶光合及叶绿素荧光特性的影响[J]. 中国农业科学, 2008, 41(2): 599-606.
[18]李东升,温明星,蔡金华,等. 播期和密氮组合对镇麦10号干物质积累及产量的调控效应[J]. 麦类作物学报, 2015, 35(10): 1426-1432.
[19]吴祯,张保军,海江波,等. 不同种植方式对冬小麦花后干物质积累与分配特征及产量的影响[J]. 麦类作物学报, 2017, 37(10): 1377-1382.
[20]马尚宇,王艳艳,刘雅男,等. 播期、播种量和施氮量对小麦干物质积累、转运和分配及产量的影响[J]. 中国生态农业学报(中英文), 2020, 28(3): 375-385.
[21]张小涛,黄玉芳,马晓晶,等. 播种量和施氮量对不同基因型冬小麦干物质累积、转运及产量的影响[J]. 植物生理学报, 2017, 53(6): 1067-1076.
[22]刘万代,陈现勇,尹钧,等. 播期和密度对冬小麦豫麦49-198群体性状和产量的影响[J].麦类作物学报, 2009, 29(3): 464-469.
[23]柴守玺,赵德明,常磊. 西北绿洲种植密度对冬小麦产量及生理指标的影响[J]. 生态学报, 2008, 28(1): 292-301.
[24]房锋,张朝贤,黄红娟,等. 麦田节节麦发生动态及其对小麦产量的影响[J]. 生态学报, 2014, 34(14):3917-3923.
[25]卓武燕,张正茂,刘苗苗,等. 不同类型小麦光合特性及农艺性状的差异[J]. 西北农业学报, 2016, 25(4): 538-546.
[26]张向前,陈欢,赵竹,等. 密度和行距对早播小麦生长、光合及产量的影响[J]. 麦类作物学报, 2015, 35(1): 86-92.
[27]陈爱大,蔡金华,温明星,等. 追施氮肥对强筋小麦‘镇麦168’产量和品质的影响[J]. 西南农业学报, 2014, 27(3): 1154-1158.
[28]刘莹,唐清,王立峰,等. 播期和密度对襄麦 D31籽粒产量及品质的影响[J]. 麦类作物学报, 2017, 37(3): 376-381.
[29]CARR P M, HORSLEY R D, POLAND W W. Tillage and seeding rate effects on wheat cultivars: I. Grain production[J]. Crop Science, 2003, 43: 202-209.
[30]LLOVERAS J, MANENT J, VIUDAS J, et al. Seeding rate influence on yield and yield components of irrigated winter wheat in a Mediterranean climate[J]. Agron J, 2004, 96: 1258-1265.
[31]陈雨海,余松烈,于振文. 小麦生长后期群体光截获量及其分布与产量的关系[J]. 作物学报, 2003, 29(5):730-734.
[32]曹倩,贺明荣,代兴龙,等. 密度、氮肥互作对小麦产量及氮素利用效率的影响[J]. 植物营养学与肥料学报, 2011,17(4): 815-822.
[33]YANG D Q, CAI T, LUO Y L, et al. Optimizing plant density and nitrogen application to manipulate tiller growth and increase grain yield and nitrogen-use efficiency in winter wheat[J]. Peer J, 2019, 7: e6468.
[34]MA S C, WANG T C, GUAN X K, et al. Effect of sowing time and seeding rate on yield components and water use efficiency of winter wheat by regulating the growth redundancy and physiological traits of root and shoot[J]. Field Crops Research, 2018, 221:166-174.
[35]张永丽,肖凯,李雁鸣. 种植密度对杂种小麦 C6-38/Py85-1 旗叶光合特性和产量的调控效应及其生理机制[J]. 作物学报, 2005, 31(4): 498-505.
[36]郑飞娜,初金鹏,张秀,等. 播种方式与种植密度互作对大穗型小麦品种产量和氮素利用率的调控效应[J]. 作物学报, 2020, 46(3): 423-431.
[37]田纪春,邓志英,胡瑞波,等. 不同类型超级小麦产量构成因素及籽粒产量的通径分析[J]. 作物学报, 2006, 32(11): 1699-1705.
[38]周延辉,朱新开,郭文善,等. 稻茬小麦中高产水平下产量及其构成因素分析[J]. 麦类作物学报, 2018, 38(3): 293-297.
[39]周继泽,欧行奇,王永霞,等. 河南省五大主导小麦品种适宜播种量研究[J]. 农学学报, 2019, 9(2): 1-6.

相似文献/References:

[1]伍 宏,朱昌华,夏 凯,等.叶面喷施激动素对小麦品种济麦22品质的影响[J].江苏农业学报,2016,(02):299.[doi:10.3969/j.issn.1000-4440.2016.02.010]
 WU Hong,ZHU Chang-hua,XIA Kai,et al.Effect of foliar application of kinetin on quality of Triticum aestivum L. Jimai 22[J].,2016,(01):299.[doi:10.3969/j.issn.1000-4440.2016.02.010]
[2]蒋正宁,别同德,赵仁惠,等.受条锈菌诱导的小麦丝氨酸苏氨酸激酶基因TaS/TK的克隆与表达[J].江苏农业学报,2016,(05):980.[doi:10.3969/j.issn.1000-4440.2016.05.004]
 JIANG Zheng-ning,BIE Tong-de,ZHAO Ren-hui,et al.Cloning and expression analysis of a Serine/Threonine protein kinase gene TaS/TK in wheat in response to stripe rust fungal infection[J].,2016,(01):980.[doi:10.3969/j.issn.1000-4440.2016.05.004]
[3]丁彬彬,张旭,吴磊,等.小麦3B 短臂染色体抗赤霉病主效 QTL 区域候选基因的表达[J].江苏农业学报,2017,(01):6.[doi:10.3969/j.issn.1000-4440.2017.01.002 ]
 DING Bin-bin,ZHANG Xu,WU Lei,et al.Expression of candidate genes on the region of a major QTL for the resistance to Fusarium head blight on the short arm of chromosome 3B in wheat[J].,2017,(01):6.[doi:10.3969/j.issn.1000-4440.2017.01.002 ]
[4]周淼平,姚金保,张鹏,等.小麦幼苗纹枯病抗性评价新方法[J].江苏农业学报,2017,(01):61.[doi:10.3969/j.issn.1000-4440.2017.01.010 ]
 ZHOU Miao-ping,YAO Jin-bao,ZHANG Peng,et al.New method for the resistance evaluation of wheat sharp eyespot in seedling[J].,2017,(01):61.[doi:10.3969/j.issn.1000-4440.2017.01.010 ]
[5]吴磊,姜朋,张瑜,等.苏麦3号小麦穗部病毒诱导的基因沉默(VIGS)体系的建立及验证[J].江苏农业学报,2017,(02):248.[doi:doi:10.3969/j.issn.1000-4440.2017.02.002]
 WU Lei,JIANG Peng,ZHANG Yu,et al.Construction and validation of virus-induced gene silencing(VIGS) system in spike of wheat variety Sumai 3[J].,2017,(01):248.[doi:doi:10.3969/j.issn.1000-4440.2017.02.002]
[6]邵继锋,陈荣府,董晓英,等.利用分根技术研究小麦铝磷交互作用[J].江苏农业学报,2016,(01):78.[doi:10.3969/j.issn.1000-4440.2016.01.012 ]
 SHAO Ji-feng,CHEN Rong-fu,DONG Xiao-ying,et al.Aluminum-phosphorus interaction in wheat grown in a split-root device[J].,2016,(01):78.[doi:10.3969/j.issn.1000-4440.2016.01.012 ]
[7]叶景秀.小麦籽粒蛋白质双向电泳体系的优化[J].江苏农业学报,2015,(05):957.[doi:doi:10.3969/j.issn.1000-4440.2015.05.002]
 YE Jing-xiu.Optimization of two-dimensional electrophresis system for grain protein in spring wheat[J].,2015,(01):957.[doi:doi:10.3969/j.issn.1000-4440.2015.05.002]
[8]郑舒文,徐其隆,邹华文.脱落酸对涝渍胁迫下小麦产量的影响[J].江苏农业学报,2015,(05):967.[doi:doi:10.3969/j.issn.1000-4440.2015.05.004]
 ZHENG Shu-wen,XU Qi-long,ZOU Hua-wen.Yield of waterlogged wheat in response to ABA application[J].,2015,(01):967.[doi:doi:10.3969/j.issn.1000-4440.2015.05.004]
[9]张玉萍,马占鸿.不同施氮量下小麦遥感估产模型构建[J].江苏农业学报,2015,(06):1325.[doi:doi:10.3969/j.issn.1000-4440.2015.06.020]
 ZHANG Yu-ping,MA Zhan-hong.Yield estimation model of wheat based on remote sensing data under different nitrogen supply conditions[J].,2015,(01):1325.[doi:doi:10.3969/j.issn.1000-4440.2015.06.020]
[10]张卓亚,王晓琳,许晓明,等.腐植酸对小麦扬花期水分利用效率及灌浆进程的影响[J].江苏农业学报,2015,(04):725.[doi:10.3969/j.issn.1000-4440.2015.04.003]
 ZHANG Zhuo-ya,WANG Xiao-ling,XU Xiao-ming,et al.Effect of humic acid on water use efficiency and grouting process of wheat at flowering[J].,2015,(01):725.[doi:10.3969/j.issn.1000-4440.2015.04.003]

备注/Memo

备注/Memo:
收稿日期:2020-07-05 基金项目:泰安市科技计划引导计划项目(2019NS094);山东省重点研发计划项目(2016GNC113004);国家小麦现代农业产业技术体系项目(CARS-3-2-21) 作者简介:吕广德(1987-),山东滨州人,硕士,农艺师,主要从事小麦遗传育种与高产栽培技术研究。(E-mail)2007guangd@163.com 通讯作者:吴科,(E-mail)sdtawuke1964@126.com;钱兆国,(E-mail)qianzhaoguo@163.com
更新日期/Last Update: 2021-03-15